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Abstract—Indoor localisation helps monitoring the positions
of a person inside a building, without GPS coverage. In the past
decade, much research effort have been invested into Indoor
Fingerprinting, which is considered one of the most effective
indoor tracking methods to date. In recent years, some researches
started looking at crowdsourcing the fingerprinting database with
the contributions from indoor users via mobile phones or laptop
PCs. However, the crowdsourcing process was greatly limited due
to the lack of indoor reference, in contrast to the widespread use
of GPS reference for outdoor crowdsourcing. In this paper, we
propose a novel idea to crowdsource the fingerprinting database
without any preset infrastructure, landmarks, nor using any
advanced sensors. Our idea is based on the observations that
the users often carry a mobile phone with them, and there
are multiple social contacts amongst those users indoor. First,
we exploit the user’s continuous movement indoor to refine the
location prediction set. Our approach can be applied to enhance
other systems. Second, we use a unique concept to detect the
indoor social contacts with NFC by tapping the back of the 2
phones together. Third, we propose a novel idea to combine this
social contact and the user’s continuous movements to identify the
exact entries with confidence in the fingerprinting database that
need updating for crowdsourcing. Finally, we share our thoughts
on automating the crowdsourcing process without any user input.

I. INTRODUCTION

Indoor localisation helps monitoring the positions of a
person inside a building, without GPS coverage. In the past
decade, much research effort have been invested into Indoor
Fingerprinting, which is considered one of the most effective
indoor tracking methods to date. Fingerprinting-based ap-
proaches live above the communication layers such as WLAN,
GSM, FM, and took advantage of the existing infrastructures
to provide location tracking service. A few metre accuracy
level has been reported in laboratory experiments. However,
one of the challenges to allow widespread deployment of
Fingerprinting was the maintainability of the off-line training
database, which gradually becomes outdated because of en-
vironmental changes. In recent years, some researches started
looking at crowdsourcing the fingerprinting database with the
contributions from indoor users via mobile phones or laptop
PCs. However, the crowdsourcing process was greatly limited
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due to the lack of indoor reference, in contrast to the successful
use of GPS reference for outdoor crowdsourcing.

In this paper, we propose a novel idea to crowdsource
the fingerprinting database without any preset infrastructure,
landmarks, nor any advanced sensors. Our idea is based on the
observations that the users often carry a mobile phone with
them, and there are multiple social contacts amongst those
users indoor. This information seems to be largely underused
by the community so far. First, we explain how to constrain a
location predictions set generated by any prediction algorithm
at any position, by comparing the continuous movement data.
Further, when two persons meet, their location estimations
serve 2 purposes. First, it constrains the final location as an
intersection of the 2 prediction sets, and removes all outliers,
which are far away from their actual location, but have a
similar signal readings because of signal attenuation indoor.
In reality, the user often meets several other people in the
same place, which greatly reduces their prediction sets at that
location. The second purpose is the ‘meeting place’ can be
used as a ground-truth reference to pinpoint the exact entries in
the fingerprinting database that needs updating. Our algorithm
can deliver a ‘guaranteed’ index with a confident level for the
training data, given the prediction set may contains more than
1 location. To acknowledge when two persons meet, we pro-
pose an idea with Near Field Communication (NFC) by simply
tapping the back of the 2 phones together. To our knowledge,
we were the first to exploit such NFC function for the indoor
localisation. Further, we explain a novel method to make our
system fully automatic without much user intervention at all.

The main contributions of our paper can be addressed in
four ways. First, we exploit the user’s continuous movement
indoor to refine the location estimation set. Our approach
can be applied to enhance other current systems. Second,
we propose a unique concept to detect the indoor contacts
with NFC by tapping the back of the phones together. Third,
we propose an idea to combine the above 2 concepts to
identify the exact entries in the fingerprinting database with
confidence for crowdsourcing. Lastly, we share our thoughts
on automating the crowdsourcing process without user input.



II. THE FUTURE OF FINGERPRINTING INDOOR
LOCALISATION

A. Current State-of-the-Art and Challenges

Global Navigation Satellite Systems (GNSS) such as GPS
have been successfully deployed in the past 2 decades, and
are indispensable for outdoor navigation. However, people
spend most of their times indoor, where limited or not at
all GNSS service is available. The demands of daily used
applications such as supermarket and hospital navigation, to
emergency systems have encouraged much interest in the
indoor localisation research. Fine-grained positioning systems
with centimetre accuracy to coarse-grained room-level systems
have been successfully reported [1], [2]. Since invented in
2001, Location Fingerprinting has gained much popularity due
to its simplicity, which takes advantage of the existing building
communication infrastructure such as WLAN [3]. The method
has 2 phases. In the first phase, which is known as the off-
line phase, a training database collects the WLAN signal at
every location in the building. In the on-line phase, when a
user wants to discover his position, he measures the WLAN
signal at his current location, and use the previous training
database to infer a closest match. Fingerprinting can be viewed
as a typical classification problem, where the training database
composes of examples mapping the WLAN signal (the object),
to its Cartesian x,y, 2z co-ordinate (the label). Our task is
to predict the right label for a known object. However, this
prompts a question if Fingerprinting is the right direction for
future indoor localisation? Below are some of our thoughts on
the strengths and weaknesses of Fingerprinting.

In terms of accuracy, Fingerprinting is still a long way
short of the extreme 3 cm achieved by those lateration
and angulation-based systems [1]. Although we have seen a
much improved sub-metre tracking accuracy reported in recent
works, typically with the use of CSI [4]-[6], there are multiple
components including the training data resolution and density,
signal properties, prediction algorithm, which all contribute to
the end tracking result.

Availability can be Fingerprinting’s strength, thanks to
the ubiquitous indoor communication infrastructure such as
WLAN or Bluetooth. Other long range outdoor signals such
as FM or GSM can be used to boost low coverage indoor areas.
There are several reports on Fingerprinting outdoor localisa-
tion systems, both commercialised and non-commercialised,
such as SkyHook' or OpenStreetMap?.

Installation and ease of use have their pros and cons.
In most cases, the user only needs to install an app on
their mobile devices to enable tracking capability. Apart from
a central server to exchange data with the users, no extra
hardware is needed, because the whole idea took advantage
of the existing communication infrastructure of the building.
However, the initial concept of Fingerprinting does require an
off-line site-survey step.

Uhttp://www.skyhookwireless.com
Zhttp://www.openstreetmap.org

Maintainability is the most challenging aspect of Finger-
printing. The training database becomes outdated over times,
and to re-calibrate the whole tracking zone requires much
labour work. This is one of the reasons Fingerprinting has
yet been widely deployed in real offices.

We have not discussed other aspects such as security,
risk, reliability, since they are out of the scopes for this
paper. Clearly, one of the challenges for Fingerprinting to
be practical is the off-line training data handling. We need a
less manual labour, yet reliable concept to collect and update
such database. In recent years, crowdsourcing has emerged
as the front runner to tackle such issue. There are still much
challenges when applying crowdsourcing into Fingerprinting,
to be discussed in the next part.

B. Crowdsourcing the Fingerprinting Database

Crowdsourcing is an idea of dividing a big task into smaller
sub-tasks, that can be solved separately by individuals. They
can contribute to the end result at the same time, or in turn.
There are several advantages for us to consider Crowdsourcing
as an ideal candidate to handle the Fingerprinting database.
First, many people use PC, laptops and other electronic
equipments on a daily basis that are capable of receiving the
WLAN signals. Further, people often carry a mobile phone
with them when they are out and about. These people can be
turned into mobile contributors to crowdsource the fingerprint-
ing database un-intentionally, while tradition fingerprinting
systems employed experts to pre-survey the building. There
are 2 ways to crowdsource an indoor fingerprinting database,
client-side or server-side. For client-side crowdsourcing, each
person has an app on his mobile phone to report the latest
WLAN signals at his current location to a central server. The
app can run in the background without much interference
to other activities. For server-side crowdsourcing, there is no
custom code to be installed at the user-end at all. Instead, a
custom WLAN driver is installed on the Access Points (APs)
to monitor the latest WLAN signals to the registered users.
At any time the user does not wish to be tracked, he simply
switches off his phone’s WLAN adapter, in the case of server-
side tracking, or exits the app for client-side tracking.

One of the major challenges for indoor fingerprinting crowd-
sourcing is the lack of ‘ground-truth’ references between the
contributors’ data and the training data. Outdoor crowdsourc-
ing systems relied on GPS to provide such reference. In the last
few years, some research effort has been spent to tackle this
issue, such as providing a graphic user interface for the users
to manually input their current location [7], [8], or deploying
fixed landmarks throughout the tracking zone so that the users
make contributions at specific positions in the building [9]. The
most notable work is the use of inertial mobile phone sensors
(accelerometer, compass, gyroscope), combining with a site
map to provide location reference [10]. In our work, we avoid
using extra infrastructure which are not practical to deploy, nor
advanced sensors which are noisy indoor. Our ideas exploit
the indoor social contact aspects and NFC to crowdsource the
Fingerprinting database, which we will discuss soon.



C. Related Work

There are several Pedestrian Dead-Reckoning (PDR) based
systems, that use inertial sensors (accelerometer, compass,
gyroscope) in the mobile phones to navigate around a build-
ing [10]-[13]. Since these systems are independent of the
WLAN signal, they use their own navigation capability to
provide location reference for the WLAN signals collected
while the user navigates the building. These PDR systems are
closest to infrastructure-less automatic crowdsourcing systems.
The challenges for those systems are that the sensors in current
smart phones were mainly included for basic app support,
rather than for robust tracking purpose, therefore they are
susceptible to indoor noise. Compass sensor does not work at
all in many offices. Further, the position the user holding the
phones and its orientation affect the accelerometer readings.
Traditional PDR systems attach a small device on the users’
feet to measure the stride and step length, while it is not
feasible to stick a smart phone onto the users’ feet. Our work
avoid using such inertial sensors.

There have been several NFC-based indoor positioning
systems. In [7], multiple QR tags are set up in fixed locations
in the building. The users scan the tags with the phone’s
camera to reveal their current location to the system. In [14],
multiple RFID tags are deployed in a similar manner to the
QR codes. These RFID tags, however, enable automatic signal
collection when a user passes by. We avoid using such tags,
since extra infrastructure (QR codes, RFID tags) must be
set up for a new building beforehand. Other systems require
manual inputs from the users via a GUI to identify which
position the latest WLAN signals come from [7]. However,
the users can only recognise their current locations by room
number, resulting in coarse-grained tracking level. We would
prefer the crowdsourcing process to be executed with less user
intervention, or not at all if possible.

ITII. EXPLOITING CONTINUOUS MOVEMENTS AND SOCIAL
CONTACTS FOR FINGERPRINTING CROWDSOURCING

A. Indoor Fingerprinting Assumptions

Our ideas rely on the following 2 assumptions. Through-out
the paper, we will refer back to them for further clarifications.

1) The quality of the training database decreases gradually,
but not instantly. The dynamic environment (furniture re-
arrangement, human movements, humidity) contributes
to the changes of WLAN signals in the building.

2) The user cannot jump a long distance in a short period
of time. Typically, it is unlikely the user can travel more
than 5 metres within 3 seconds by walking.

B. Extra Information From Continuous Movements Indoor

When Alice wants to navigate the building, she opens the
tracking app on her mobile phone (in the case of client-side
tracking), or simply switches on the WLAN adapter to let the
APs recognise her phone (in the case of AP-side tracking),
as discussed previously. The system measures the WLAN
signal strength (RSSI) between Alice and the nearby APs, and

calculates a set of location estimations y4 = {a1,az,...,an}
with a; = (x,y,z) is the Cartesian co-ordinate vector, in
which Alice may currently resides. While previous solutions
combined these locations or prioritised certain prediction,
we will treat all these predictions equally for now. In our
experience, not any of these locations is wrongly predicted by
the algorithms. In fact, the areas around Alice have a similar
WLAN reading because of the indoor signal attenuation, a
typical challenge of indoor localisation. Also, the signal at
her current location recorded in the database may have already
changed since the last time it was collected.

A moment later, Alice moves away. The system measures
the RSSI from her new location, and another independent set
of prediction locations is returned vy = {af,a5,...,a}}.
Based on the second assumption (Section III.A) that Alice
cannot jump a long distance in a short period of time, we
know that these 2 prediction sets are in close proximity.
Therefore, by comparing the Cartesian distance between those
sets, we can select the top current predictions that are likely
to be reached from all preceding predicted locations. First,
we remove the isolated outliers in y;‘, that are 5 metres or
more to all predictions in y4 in the Cartesian space. Second,
we calculate the distance between each prediction a; € v/
to the whole preceding location set 34, and retain the top
50% predictions in y 4 with the smallest distances. When Alice
moves to another new location, we repeat this process again.
However, this time we disregard the original prediction set y 4,
and only consider ¥/, to refine her current prediction location.

In summary, by considering the indoor continuous move-
ments, we were able to accumulate the location prediction
history as the user navigates the building. Our approach refines
the current location set by removing the violated predictions,
based on the most recent location’s predictions. In the next
section, we introduce the indoor social contacts idea to crowd-
source a fingerprinting database.

C. Exploiting the Indoor Social Contacts for Crowdsourcing

We use the above scenario with Alice navigating the build-
ing. At some moment, Bob, who is using the same tracking
system, happens to walk by. The system is also keeping track
of Bob’s independent prediction location history. If we can
acknowledge that Bob & Alice are in the same position, their
current location estimations can be further reduced to the in-
tersection of the 2 prediction sets. In daily environment, more
than often many people are in the same location at different
times through out the day. For example, if Carol happens
to walk by the position Bob & Alice are currently in, their
locations are greatly constrained to much fewer overlapped
predictions. Regardless of what prediction algorithm we use,
if the final intersected set contains only 1 prediction, we are
certain that this is the training database entry to be updated
with the latest WLAN signals. In reality, the final set often
contains more than 1 prediction, due to the similarity of the
indoor signals in a small area. We propose a novel algorithm,
based on our previous work on Conformal Prediction Indoor
Localisation, to reduce the size of the prediction sets with each



user’s confidence level [15], [16]. Our algorithm is summarised
as follows.

Giving a training database B = (z1, 22, . . . , 2,—1) mapping
Cartesian co-ordinate (the label set Y) to WLAN signals
(the object set X), a WLAN reading at an unknown location
(a new object z,), and a pre-defined confidence level, our
algorithm selects a set of examples in the database to match
this new sample. We treat Fingerprinting as a classification
problem, because our label set is finite. Each example z; is a
combination of a WLAN vector RSST; = (s, s5,...,s%) and
the Cartesian co-ordinate L; = (d¥,d?,d?). To evaluate the
difference amongst the examples, we employed the ‘Weighted
K-nearest neighbours’ (W-KNN) as the underlying algorithm
to compute the ‘nonconformity score’ a. We assume the
correct position to be each of every recorded locations in Y. A
prediction region of K examples is R°(z1, 22,...,2x) C Y.
To calculate the similarity between 2 WLAN distributions Px
and Py, we use the symmetrised Kullback-Leibler formula,
with M is the number of bins in the histogram, and N is the
number of APs.

Sym_Dkr(Px, Py) = Dir(Px||Py)+ Drr(Py||Px) (1)

where
S P[] 1o, PXL
Dir(Px || Py) =) Plil log>— )
j=1i=1 Py i)
J=11i=
With the above equation, we find K examples (z1,...,2x)
in training database B with the smallest difference

D k1 (P;, P,) to the new sample U, and having the same label

= (d¥,d?,d?) with U(1 < i < K). We then calculate a
welghted average location e, = (d%,,,d¥,,,d?,,) from these
K examples (e is a small constant to prevent d1v1510n by zero).
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Similarly, we find another K entries (21, ..., 2% ) in training
database B with smallest distances Dg . (F;, P,) to the new
sample U, this time with a different label L; = (d}*,d;”, d}?)
to U(l < i < K). Another weighted average location
edqf = (dgy, dy, di;) is calculated from these K entries. Our

nonconformity measure is calculated as

= /5, — dip)? dip)? @

With the above equation, we calculate the nonconformity
score «;, with 4 = 1,...,[, for every example in the database
B. The p-value for a possible label g is calculated as

W #i=1,.. 0+ 1 a; > o}
p(g) = I+1
Given a significance level ¢ beforehand, the assumed label
is accepted as a correct label for the new sample, if and only if
p-value > ¢. All accepted locations form a prediction region,

+ (d¥m — + (dz,, — d3)?

(&)

which guarantees to contain the correct position along with
the associated confidence level. A proof of our algorithm and
more details can be found in our previous work in [15], [16].

There are 2 options to reduce the size of the prediction
set with our algorithm. First, we can manually decrease
the confidence level of each person. Second, we can pro-
actively pick the top predictions with the biggest p-values
only (the top 50% predictions for example). Ideally, we prefer
a high confidence level while maintaining a minimal size of
prediction set. Our approach was one of the first to provide
such confidence level for each prediction. In the experiment
section, we will evaluate the trade-off between confidence level
and prediction size.

An important requirement to implement our idea is that we
must reliably and correctly detect that Bob & Alice are in
the same position. The simplest solution is to let the users
indicate when such contact has happened themselves. The
limitation in previous works, where the users manually input
their current positions via a GUI, or scan the tags deployed
beforehand in the building, is that the location indicated by
the user may not match the collected WLAN signals. This
is due to the varying distances between the phone’s camera
and the tags, or because the users do not input their current
locations correctly. Our idea overcame these limitations by
using Near Field Communication (NFC) to detect the phone’s
contact correctly without extra landmarks. Since early 2011,
smart phones were equipped with NFC chip, which allows
them to establish close proximity connection to another phone
within a few inches. In many Android phones, these chips are
located at the back of the device. For our purpose, we just want
a confirmation that the 2 persons are in the same location, and
by tapping the back of their phones together, we have a simple,
yet accurate solution. Since NFC between 2 phones only work
within a few inches, the system can indicate precisely when
the 2 phones are tapped, then collects the latest WLAN signals
at that moment. To our knowledge, we were the first to utilise
such function for the indoor localisation research.

In summary, our idea provides a simple and effective
solution to detect an indoor contact by tapping the back of
the phones together. This is our ‘ground-truth’ reference to
combine the prediction sets of multiple persons in the same
location. Further, we associate a confidence level for each user
to reduce the size of their prediction sets. The overlapped
predictions from multiple users pinpoint the correct entries
in the training database for crowdsourcing.

D. Bringing It All Together

Figure 1 demonstrates the progress of our crowdsourcing
scheme. The system first returns a prediction set for Alice’s
initial unknown location. As she navigates the building, the
app periodically measures the current signal strength to refine
Alice’s location estimations, based on her preceding location’s
prediction. At any moment, Bob is detected via NFC. This
is a ground-truth reference signalling that Bob and Alice’s
prediction sets are overlapped, and the intersected predictions
are candidates for crowdsourcing. Since Bob and Alice have



their own prediction location history, their prediction sets are
different. By adjusting their own confidence levels, the system
further reduces the size of the prediction sets.
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Fig. 1. Crowdsourcing Steps

IV. EMPIRICAL EXPERIMENTS
A. Test beds

We used two test beds collected in real offices. Both test
beds are divided into squared grids. The first test bed (TB 1)
has a dense 30cm resolution, while the second one (TB 2) has
a sparser 1.5m resolution [15]. For simplicity, all users possess
the same mobile device in both training and real-time phases.

B. Evaluations

Figure 2 demonstrates the effectiveness of our ideas in
reducing the size of the prediction set at any moment, by
monitoring the user’s continuous movements. In the example,
we managed to remove 40% percents of predictions while
keeping the correct one. It is also worth noting that the area
of interest formed by the remaining predictions (the circled
predictions) is tighter with our approach.

Next, we evaluate our indoor contact detection via NFC
idea. If we only use the 2 location prediction sets collected at
the moment the 2 users tap their phones, the averaged number
of overlapped predictions is above 10 for the first test bed,
and is around 5 for the second test bed. This overlapped
portion occupies 70% to 85% of the whole prediction set,
for both data sets. Such high proportion of similar predictions
are expected, because the 2 signal sets are collected in the
same position. We would not expect them to be 100% similar
because of the orientation of the phones, and the way user
holds the phones. However, as we combine this prediction
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Fig. 2. Reduced Prediction Region From Continuous Tracking (TB 1)

set with the one previously generated from our continuous
movement tracking scheme, the intersected portion becomes
much smaller (the circled predictions in Figure 3). Although
the users are currently in the same spot, they had their own
navigation history, which helps removing certain prediction
that they are not likely to reach from their previous locations.
In the example, Alice & Bob’s current location predictions
are reduced to the intersected portion of the 2 circles, which
contains just 2 predictions including the correct one.
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Fig. 3. Prediction Region From Both Combining Continuous Movement &

Indoor Contact (TB 2)

So far, we have not discussed the confidence level param-
eter, which was preset at 95% for all above experiments.
Figure 4 demonstrates the amount of predictions removed by
decreasing this confidence level. Overall, it is safe to reduce
our confidence level to 70% and 75% for the first and second
test bed respectively, without losing the correct prediction. By
doing so, we managed to remove up to 30% of predictions.

Overall, by averaging the intersected predictions from 2
users, we achieved less than 1.5 metres error, with 80%
confidence (Figure 5). Our system can achieve near maximum
database resolution accuracy, although it is not quite fair
to compare ours with other existing systems, because such
accuracy is obtained when an indoor contact with other users
happens, and our purpose is to crowdsource the database,
rather than providing location tracking.
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V. CONCLUSIONS
A. Main Contributions

We have proposed a novel idea to crowdsource the finger-
printing database without any preset infrastructure, landmarks,
nor any advanced sensors. Our ideas base on the observations
that the users often carry a mobile phone with them, and
there are multiple indoor contacts amongst those users. This
information seems to be largely underused by the community
so far. First, we exploited the user’s continuous movement to
refine the location estimation set by removing the outliers.
Our approach is generic and can be applied to other current
systems. We then proposed a unique concept to correctly detect
the indoor contacts with NFC by tapping the back of the
phones together. Finally, we define a confidence level for each
user’s prediction set, which can be adjusted to reduce the size
of the set.

B. Future Work

Ideally, we prefer a fully automatic crowdsourcing system,
where the fingerprinting database is automatically updated
with the latest WLAN signals from the contributors, without
extra infrastructure, nor any user intervention. One might
assumes that when 2 persons are in the same position, they
should observe the same wireless signals from nearby APs,
therefore, their contact can be detected off-line by analysing
the signals. However, this assumption does not strictly hold
for both indoor and outdoor. In our other work, we calculate
a ‘matching rate’ value, based on the APs appearance to
work out the possibility that 2 users are in the same location.

Our experiments showed that the average matching rate was
around 60%, even when they were in the same position. This
indication serves little purpose when the users are a few metres
apart. However, we observed that the matching rate does reach
100% when the 2 phones are not moving at all, which might
be applicable for crowdsourcing, since the users often stand
still to talk to other people nearby. Further, although our initial
approach does not require a site map of the building at all, such
map can be combined with our continuous movement approach
to remove the violated predictions, such as wall penetration.
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