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Abstract

This report describes the work in progress, analysing ExCAPE data on possibility of multi-
target learning. We start with observing the structure of missing values (labels), as the sets
of examples overlap but are not identical for different targets. Then we concentrate on the
part of the data with full information in order to consider mutual dependence between the
targets, and possibility of improvement of prediction by collecting the information together.

1. Introduction

Most of the work, done by CLRC group for ExCAPE project before (such as (1; 2)), was
devoted to making reliable predictions for different targets independently of each other.
Each of them was considered as a separate binary classification problem, answering the
question whether a compound is active on a specific target. One of the causes for that was
incomplete correspondence between the information available for different targets. For a
large part compounds, their activity was measured only on some of the targets, not all of
them.

However, it may happen that information about each target gives a ‘hint’ for prediction
of other targets. Here we try to cover this gap.

For this preliminary study, we have taken three top targets, for which the largest amount
of information is available. As we will see, the activities are positively dependent on each
other, however the structure of missing values is also not random. However, on some clause
it is possible to restrict us only to the examples where information about all three targets is
available, and assume that the training an testing set are shared for all the three problems.

Joint classification for three targets, based on a shared training set can have interpreta-
tion in terms of multi-target learning (5) or LUPI paradigm (? ). Detailed review of them,
with their combination with conformal framework, can be found in .

However, for a concrete data base this is a challenge to estimate whether any of this
methods can increase the efficiency of the prediction. The key question can be posed in this
way: does learning on two or more targets improve the prediction for one of the targets,
compared to the prediction to the prediction after training without involving information
for the other targets? We try to show that the answer is positive for ExCAPE data, and
by the way formulate a modified algorithm scheme for approaching LUPI task, inspired by
this data analysis.
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2. Studies on data label structure

The information for each data example (compound) in ExCAPE project originally consists
of its sparse (QSAR) feature vector, and its activity on some number of targets.

Here we start with analysing data for possible conclusions the structure of the informa-
tion for data labels, without going into feature vectors for further sections. This study was
done on three targets.

2.1. Data for three targets

For the initial analysis we have taken three top targets:
1. CFTR;
2. IDH1;
3. NFE2L2.

Originally, activity is a numerical value, but we prefer to restrict us to a binary classification
problem now, not regression. Therefore, each of them divides the data into three categories:

1. not active (activity< 5);
2. active (activity> 5);
3. unknown (not presented).

Table 1 shown the generals statistic of labels. By examples with unknown labels for one
of the targets we mean the case when the labels is known for one or two other targets. The
example for which all three labels are unknown, are left out of consideration.

Table 1: Data distribution
inactive unknown active

CFTR | 458748 67767 1166
IDH1 462707 58883 6091
NFE2L2 | 386280 113171 18130

Table 2 shows pairwise joint distributions that would allow further to study depen-
dence/correlation between the activities themselves, and between the activities and avail-
ability of knowledge.

The overall (three-target) joint distribution is shown in Table 3. The ‘middle’ cell
contains 0 by the reason mentioned above. This table is shown for information and does
not play important role in the study.
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Table 2: Data distribution (pairwise)

(any NFE2L.2)

IDH1 inactive

IDH1 unknown

IDH1 active

CFTR inactive 406642 47024 5082
CFTR unknown 55341 11703 723
CFTR active 724 156 286
(any IDHI) CFTR inactive CFTR unknown CFTR active
NFE2L2 inactive 336765 48663 852
NFE2L2 unknown 98442 14590 139
NFE2L2 active 23541 4514 175
(any CFTR) IDHI inactive =~ IDH1 unknown  IDHI active
NFE2L2 inactive 370715 11251 4314
NFE2L2 unknown 66976 45886 309
NFE2L2 active 25016 1746 1468

Table 3: Data distribution (triplewise)

NFE2L2 inactive | IDH1 inactive IDHI1 unknown IDH1 active
CFTR inactive 331753 1192 3820
CFTR unknown 38355 10034 274
CFTR active 607 25 220
NFE2L2 unknown | IDH1 inactive IDH1 unknown IDH1 active
CFTR inactive 52676 45757 9
CFTR unknown 14292 0 298
CFTR active 8 129 2
NFE2L2 active IDH1 inactive IDHI1 unknown IDHI1 active
CFTR inactive 22213 75 1253
CFTR unknown 2694 1669 151
CFTR active 109 2 64

2.2. Missing labels

Observing Table 2, we can state the following question for each pair (A, B) of different
targets. Compare the examples (A) for which the activity of target A is known, and (Ax)
where it unknown, and check whether the distribution of activity of a target B is different

for these two groups.

The problem is well-known as so called Missing Not At Random (MNAR) data. “You
can then run t-tests and chi-square tests between this variable and other variables in the data
set to see if the missingness on this variable is related to the values of other variables”(3).

To test this, x2-test was applied to the contingency table according to the methodology
shown in Table 4. If ad > bc significantly, this means that information on target A tends

to be missing if target B is active, the opposite is if ad < be significantly.
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Table 4: Contingency table for targets A,B
B: inactive | B: active | B: unknown

A: active or inactive a b -

A: unknown c d -

The results of the x2-test are shown in Table 5, where some kind of significant MNAR ef-
fect is found for 5 of 6 target pairs having sense in this context. The direction of dependence
is selected by comparison of ad and bc as mentioned above.

Table 5: The results of x? test

Target A Target B p-value direction of dependence
(known/unk.) | (act./inact.) | (chi-square)
CFTR IDH1 0.83 -
CFTR NFE2L2 7.9 x 1075 | CFTR unknown~active NFE2L2
IDH1 CFTR 7.2 x 10728 IDH1 unknown~active CFTR
IDH1 NFE2L2 | 1.0 x 10729 | IDH1 unknown~active NFE2L2
NFE2L2 CFTR 2.2 x 107" | NFE2L2 unknown~inactive CFTR
NFE2L2 IDH1 5.1 x 1079 | NFE2L2 unknown~inactive IDH1

2.3. Is the data collection biased?

Multiple low p-values is Table 5 signify possible bias in data collection. Its most likely
explanation is that active examples are under-represented in data collected for CFTR and
IDH1, and/or over-represented in NFE2L2.

This may be taken into account in the interpretation of predictions. However, such expla-
nation is incomplete: for example, there may be only under-representation in CFTR/IDHI,
or only over-representation in NFE2L2, and these two causes are not distinguishable by
means of data analysis only.

According to the nature of problem, we can assume that latter case (over-representation)
is more likely, because typically positive examples are more of interest for data collection,
registered more frequently, and therefore may be over-represented. In that case, p-values and
probabilistic scores assigned to prediction of activity the compounds by machine learning
algorithms may be slightly shifted to upper side.

However, we see that the degree of over-representation depends on the specific kind of
target. In this case the degree is the largest of three in NFRE2L2 that is also the smallest by
overall amount of collected information, but the largest in the number of registered actives
(see Tab.1). It looks like that the collection was more accurate for two top targets (CFTR
and IDH1) and more restricted to positives for this one. Checking more targets may clarify
how typical this effect is.
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2.4. Data with complete information

Up to clauses made above about possible shifts, we will restrict us to the example where
information about activity is present for all three targets.

The extraction from the data summary is shown in Table 6. It shows three-target joint
distribution of activity, as well as its two- and one-dimensional summaries for target pairs
and unique targets. ‘Any IDH1’ etc. in this table refer only to the cases when the values
are known, not missing.

Table 6: Distribution of data without missing labels

NFE2L2 inactive | IDH1 inactive IDHI active | (any IDHI)
CFTR inactive 331753 3820 335573
CFTR active 607 220 827
(any CFTR) 332360 4040 336400
NFE2L2 active | IDH1 inactive IDHI1 active | (any IDH1)
CFTR inactive 22213 1253 23466
CFTR active 109 64 173
(any CFTR) 99322 1317 23639
(any NFE2L2) | IDH1 inactive IDHI active | (any IDH1)
CFTR inactive 353966 5073 359039
CFTR active 716 284 1000
(any CFTR) 354682 2357 360039

Now we apply x2-test just to study dependence between two kinds of activity. The
methodology is shown in Tab. 7.

Table 7: Contingency table for targets A,B
B: inactive | B: active | B: unknown

A: active a b -

A: inactive c d -

A: unkwown - - -

The results, presented inTable 8, show that it is significant for all 3 pairs, and the
correlation is positive. This actually means that knowledge of one of them may help in
prediction of the other.

Table 8: Results of x? check
Target A | Target B p-value direction
CFTR IDH1 < 107°Y CFTR active~active IDH1
CFTR | NFE2L2 | 7.2 x 1074 | CFTR active~active NFE2L2
IDH1 NFE2L2 < 107°0 IDH1 active~active NFE2L2
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3. Multi-target data distibution

The previous section was finished on a conclusion about high dependence between data
activities. This definitely should help to predict for a compound its activity on one target
based on information for the other targets. But what we here wish so state a less obvious
question: whether the prediction quality of one target for a compound can be improved if
the information about other targets for the training compounds, not for same one? This is
actual in assumption that we are working with a new compound for which nothing is known
about its activity.

To answer this question, some study of feature vectors is also needed. In this section we
involve feature vectors into the analysis. The aim is to make conclusions about possibility
of joint prediction of labels for different targets, as something more informative compared
to their independent prediction.

3.1. Distribution of feature vectors

Leet us start with a multi-target visualisation. Fig.1 contains combined plot of the data
vectors with respect to three types of activities (see details in the caption), where the
dimensionality reduction was done by well-known distance-based tSNE approach. Only 1%
of the data is presented on the plot, therefore only some of possible activity combinations
are presented.

Let us use notation [A+]/[A-] for the class of examples with positive/negative label
for target A, and [A+B-] for intersection of two such classes for different targets A and
B. Observing Fig.1, we seems that combined [CFTR+IDH1+] activity is the most com-
pactly located (and therefore, potentially predictable) combination. It looks much more
recognisable than each of CFTR+ and IDH1+ as they are.

This leads to an idea to consider the ‘combined’ prediction of [CFTR+IDH1+] as a
separate auxiliary task. The working hypothesis is its usability to improve the prediction
quality of CFTR and/or IDHI1.

3.2. Approach for joint prediction

The next stage of data analysis is based on modelling a prediction algorithm that incorpo-
rates the additional information coming from ‘combined’ prediction. By ‘combined’ predic-
tion we mean the straightforward prediction of [CFTR+IDHI1+| as a logical conjunction:
the ‘combined’ label is positive if it is positive for both of the combined targets.

We consider interpretation of the prediction task as a kind of LUPI (6) problem, as fat
as we do not intend to use labels of the testing examples, and the goal for evaluation is
prediction quality of one of the targets.

Like (9), we use elements of Inductive Conformal Prediction (a calibration set), but the
suggested scheme is different from that work.

We assume that there is a natural underlying binary classification method that assigns
a testing example numerical scores in favour of the hypothesis of its positive activity, and
it is naturally adoptable to the ‘combined’ prediction that is also a binary one.

The plan is summarised as follows.
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Figure 1: Yellow: none of activities; Green: 1 activity; Black: 2 activities; Red: 3 activities;
Shape: kind of activity (CFT=square, IDH1=circle, NFE2l12=cross). Shown for
randomly selected 1% of the data in tSNE projection.

1. Calibration. As in the inductive mode of prediction, we divide original training data
set into the proper training set (further referred as training), and the calibration set.
For both of these set we assume the information about both kinds of activity to be
available, unlike the testing set.

2. Scoring. After learning on the training set, two types of scores (standard and ‘com-
bined’) are provided for each of calibration/testing examples. Thus, the original
calibration/testing feature vectors are converted for them to two-dimensional score
vectors, that are then used for label predictions.

3. Re-training. It is done on the calibration set in order to obtain the prediction rule for
converting the score vectors into labels.

4. Testing. The prediction rule is applied to testing set in order to make new predictions.
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3.3. Experimental details

We use the following random data split: 200,000 training examples, 100,000 calibration
examples, 112,724 testing examples, and consider the combination of two tasks: prediction
of activity for target 1 (either CFTR or IDH1), and prediction of the combined activity
[CFTR+IDHI1+], also interpreted as a binary classification task.

As the underlying method for initial numerical scores of both standard and combined
tasks, we use k-NN (k nearest-neighbours) method, selected for its best performance on the
standard task. As our scores, we take k-NN scores calculated as: ‘average distance to k
nearest inactive examples, divided by average distance to k nearest active examples’ where
neighbours are taken within the proper training set. In the context of conformal prediction,
they were used as conformity scores for the hypothesis 1, or non-conformity scores for the
hypothesis 0. However, here we do not apply the conformal prediction yet, and use the
scores in another way.

The parameter is set to k = 10 due to its best performance for the standard activity
prediction tasks.

Two alternatives methods (SVM and xGB) were tried but left out, as they perform
well on the standard task but fail on the highly imbalanced combined [CFTR+IDHI1+|
task, producing predictions that even do not show any significance dependence on the true
values. This at least means that tuning of k-NN method is more transferrable, that is
another reason we concentrate on this method for initial modelling.

Re-training will also be done by K-nearest neighbours method, but with much larger
number of neighbours than on the step of score vector creation, that allow to simplify the
way of further prediction by using ‘voting’ approach: ‘how many of K neighbours do have
the label 1°.

3.4. Visualisation of score vectors

Let us go from feature vectors to score vectors.

Fig. 2 shows the empirical joint distributions of k-NN scores for non-activity hypothesis
on the calibration/testing set. Remind that the large value of the score corresponds to high
evidence in favour of the activity hypothesis, against non-activity.

The first axis on Fig. 2 corresponds to prediction of one of the activities (CFTR on the
left, IDH1 on the right) without any usage of the other. A natural simple way of standard
prediction is using a threshold that would correspond to a vertical line on this plot.

The second axis is the same kind of two-class non-conformity score applied to the join
prediction problem, when only the ‘combined’ activity (overlap of activity on two targets) is
considered as the positive class, and all the rest is considered negative. By visual inspection
of the plots, it can be formulated hypothetically that a positive prediction is more trustable
if its combined score is close to the standard scores. However, there is no evident way of
division between ‘blue’ and ‘yellow’ areas on this plot, therefore we rely on K-NN approach
on this step.

The colour of the examples corresponds to positive class of the activity being predicted
(target 1 is either CFTR or IDH1).
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Figure 2: k-NN (k = 10) scores for single activity with support of combination scores
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3.5. Prediction curves

The final goal is comparison of the results in terms of prediction curves.
The result is shown on Fig. 3. It contains the following curve

e Random baseline (red): prediction quality that may be achieved without any training
by random prediction.

e No additional information (green): using only standard scores.

e Combined prediction (black): we show the results which were achieved with parame-
ters k = 10 (for initial scores); K = 10,000 (for re-training on score vectors).

The prediction curves are parametrised with variable threshold ¢ for the decision rule.

For the baseline (ignoring additional information) possible decision rules are ‘output a
positive prediction for a testing example if its score for target 1 is at least ¢t’. For the proper
prediction it is: ‘output a positive prediction for a testing example if the proportion of
positives amongst K closest calibration score vector is at least ¢’.

Tab. 9 shows areas under curve for £ = 10 and different values of the parameter K.

Table 9: Areas Under Curve

k K AUC (CTFR) | AUC (IDH1)
random baseline 0.5 0.5

10 | no add. info 0.5415 0.5690
10 100 0.5090 0.5452
10 1,000 0.5273 0.5648
10 10,000 0.5664 0.5523

Table 10: Negative class accuracy for positive class accuracy 0.9

k K ACCpg (CTFR) | ACCyg (IDHI)
random baseline 0.1 0.1

10 | no add. info 0.1865 0.1875

10 1,000 0.1148 0.1891

10 10,000 0.1776 0.1913

Observing the results, we see obvious improvement for CF'TR. Additional information
coming from combined prediction improves the whole curve.

The result of the prediction of comparison for IDH1 is not successful in general, but
some improvement is present if the required accuracy of active example is close to 1. It
shows an advantage if we evaluate the results by the following criterion: ‘what accuracy is
achievable on the negative class if the accuracy on positive class is 0.9?" (here 0.9 is taken as
an example: assumed that the prior requirement is to catch at least 90% active examples).

This is shown in Tab. 10 and illustrated by Fig. 4 for prediction of IDH1, showing the
corresponding part of the plot.

10



TECHNICAL REPORT (DRAFT) ON MULTI-TARGET LEARNING

£
=)
£
=)

o
[+
o
[+

o
“
o
“

e
o
e
o

I
=
I
=

=
w

accuracy for inactive exampes
o
w
e
w

accuracy for inactive exampes
o
w

e
o
e
o

0.1 0.1

0.2 0.4 0.8 0.8 1
accuracy for active examples

using CFTR only using IDH1 only

y Fad
— — —random baseline 0.2 0.4 0.6 0.8 1 — — —random baseline
using CFTR&IDH1 | ACcuracy for active examples using CFTR&IDH1

Figure 3: Prediction curves compared (k = 10, K = 10,000)

~ N
~ N
% N
0.25 005
i in
& ¢
a a
E E
T 02 2 02
v b
2 s
= =
9 0-15 8 015
£ 2
g g
> 01 g 01
g g
] 3
g 8
® 0.05 ® 0.05
5 08 085 09 095 1

- using IDH1 only = - using IDH1 only

using CFTR&IDH1 | @ccuracy for active examples using CFTREIDH1 | 2€CUracy for active examples

— — —random baseline 08 0.85 0.9 0.95 ‘———ranunm baseline

Figure 4: IDH1 prediction curves compared (k = 10; K = 1000 and K = 10,000)

11



TECHNICAL REPORT (DRAFT) ON MULTI-TARGET LEARNING

4. Conclusions and plans of the future work

According to the analysis, provided in this paper, we state several possible directions for
conclusions and next steps.

4.1. Missing labels

In Sec. 2.2 we have detected a possible connection bias that may be taken into account in
the interpretation of predictions: for some of the targets the predictions are more likely to
contain a positive shift, while for the others it may be negative. This might be analysed on
more targets.

4.2. Joint prediction

The multi-class analysis for the data with full information about labels leads to the following
recommendation: to complement the prediction of already implemented [A+] and [B+] bt
extra prediction of [A + B+]. Observing Fig. 2 leads to a hypothesis that the privileged
information may be used in its ‘support’ role: when one of the targets is being predicted,
a positive prediction is more trustable if it is supported by prediction made after training
only on the ‘overlapping’ examples (with more than one activity) as positives. This also
may have such interpretation as ‘overlapping’ examples being marked by an expert as the
most ‘strong’ and trustable positive examples.

Preliminary investigation (Sec.3.2) also inspires a possible novel approach for LUPI
prediction: to make ‘normal’ prediction based on the actual data, and to support it with
additional prediction where the active class is replaced with the smaller one containing
‘overlapping’ examples only. Some calibration set can be used to find the best way of
including the information coming from the additional prediction.

An advantage of this approach is that it provides a visual way of preliminary assessment
of the data on ‘LUPI/joint prediction’. We try to obtain an evidence in favour or against
the possibility of effective usage of additional information (that in the considered case comes
from other targets) for improvement of classification quality. Surely, the potential usage
of ’Scoring’ step is not limited to ‘combined’ additional scores calculated exactly as in the
provided example; this is generalisable to other ways of processing combined info.

However, in this report we were less concerned with developing concrete ways of reliable
prediction. The task for the future is integration of the suggested scheme with conformal or
Venn prediction. The easiest way is to do it on the stage of re-training, using voting results
of K-NN method to created non-conformity scores.

4.3. Partial LUPI paradigm

Another actual understanding of the problem was suggested by P.Toccacelli after discussing
this work. LUPI paradigm can be extended to the case when the privileged information is
present only in part of the data. This would allow to train on all the existing example, not
restricting us to ones with full information. In some sense, this paradigm was earlier used
in (10), although the implementation was done in the context of Venn machines.

12
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Appendix: Literature Review on Conformal Prediction in LUPI

ExCAPE project includes prediction of activity for different targets for the same compound.
Currently, the prediction for each target is considered as a separate machine learning prob-
lem, being solved independently of the others.

Observation of the relevant literature have shown that this may lead to some loss of
efficiency for machine learning. So it worth to try the following alternatives.

First, multi-label prediction suggested in (5). In the context of ExCAPE project, multi-
label means the same as multi-target prediction.

Second, interpretation in terms of Learning Under Privileged Information (6): when
activity for one target is predicted, activity for the other targets is understood as additional
(privileged) info.

Let us state the problem and possible solution formally. Each compound z; is assigned
a feature vector (x},...,zM) and a label vector (yj,... ,yd), where m is the number of
features and ¢ is the number of targets.

The compounds xi,...,z, belong to the training set (in inductive mode, it is split
into proper training and calibration parts), Zne, is one of testing compounds, with known
feature vector (zl,.,..., 2™,

The current (basic) approach is Alg. 1. It can be used as a baseline for other methods.
Its possible alternatives are: multi-label prediction (5) (Alg. 2), and LUPI prediction (6)

(Alg. 3).

Algorithm 1 Basic (lower baseline) prediction scheme
FOR j=1,...,q

: 1 m.,J M
train on (x;,...,2/";y/) where i =1,...,m
; J 1
predict Ynew fOr (s -« s Thti)

END FOR

Multi-label prediction

The scheme of multi-label prediction (5) is given by Alg. 2. Original meaning of the term is
making prediction in assumption that different labels do not exclude each other. It is also
possible that none of the labels is actual (’empty’ case) although it was believed to be a rare
event. Therefore, for ¢ labels, there are 29 possible answers. The same number of answers
appear in the multi-target problem, if we consider ¢ targets as analogue of ¢ non-exclusive
labels. But it has to be taken into account that the ‘empty’ case is not negligible: it is
expected to appear much more frequently than in the examples from (5). This leads to
necessity of some modifications.

Algorithm 2 Multi-label prediction scheme

train on (z},...,2;y;) where i = 1,...,m, y; = (y},...,y})
)

H — (o1 q 1 m
predict Ynew = (Unew - - - » Ynew) 10T (Tpews - - - s Thew
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The work (5) describes several ways of its realisation within the conformal framework,
with prediction region as the output. In terms of the ExCAPE multi-target problem de-
scribed above, they need to be re-interpreted and modified as follows.

1. Power Set MLCP: to test each of 29 possible hypotheses about y,e,, Within multi-class
conformal framework, output the set of combinations accepted at level €. This method
need accurate formulating of appropriate criterion of efficiency (will be discussed be-
low), and accurate selection of NCM for 29 class problem that satisfies it in the best
way.

2. Binary Relevance MLCP: a practical analogue of the baseline approach (Alg. 1).

3. Instance Reproduction MLCP: to formulate a new (g + 1)-class problem and to create
a new training set. If y; is a vector of zeros, z; is included with label 0. If the vector
y; contains 1s, then x; is included as many times as many 1s there are, each time with
another label j such that y! = 1. For example, if ¢ = 5 and y = (0,1,0,0,1), then
the example is included twice, with labels 2 and 5. For a new example ey, €ach of
q + 1 hypotheses is tested, and the prediction region consists ones accepted at level €.
Strictly saying, validity of this method is not quite rigorous, but it is shown in (5) to
be practically plausible.

Learning under privileged information

Multi-target prediction may be also understood in terms of LUPI (6), the scheme is given
by Alg. 3. LUPI may be more convenient in comparability with the basic approach than
multi-label prediction. There is no need for special efficiency criteria as in (5), the general
conformal efficiency criteria suggested in (11) are applicable.

Before applying LUPI, it may have sense to try the upper baseline (Alg. 4). If it does
not show an improvement compared to Alg. 3 then there is no much reason to expect it
from LUPI as well, because the efficiency of LUPT application (Alg. 3) is naturally expected
to lie between Alg. 1 as the lower baseline and Alg. 4 as the upper baseline.

The works (7; 8) include possible realisations of LUPI within conformal and Venn frame-
works. The approach suggested in (7) appears to be similar to Power Set MCLP.

Algorithm 3 LUPI prediction scheme
FOR j=1,...,q

train on (aczl, .. ,x;",:c;‘,yf) where i =1,...,m, 2} = (y},.. .,yzj_l,ygﬂ, ooyl
predict ynew for (xl.,, ..., 2™,)
END FOR
Algorithm 4 Upper baseline for LUPI prediction scheme
FOR j=1,...,¢q
train on (aczl, .. ,x;",:vj,yf) where i = 1,...,m, 2} = (y},.. .,y{_l,yljﬂ, ooyl

& xnew

IL‘l
new’ * ) new’

predict Yhew for (
END FOR
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