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Abstract: WiFi fingerprinting has been a popular approach for indoor positioning in the past 
decade. However, most existing fingerprint-based systems were designed as an on-demand 
service to guide the user to his wanted destination. This paper introduces a novel feature that 
allows the positioning system to predict in advance which walking route the user may use, and 
the potential destination. To achieve this goal, a new so-called routine database will be used to 
maintain the magnetic field strength in the form of the training sequences to represent the 
walking trajectories. The benefit of the system is that it does not adhere to a certain predicted 
trajectory. Instead, the system dynamically adjusts the prediction as more data are exposed 
throughout the user’s journey. The proposed system was tested in a real indoor environment to 
demonstrate that the system not only successfully estimated the route and the destination, but also 
improved the single positioning prediction. 
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1 Introduction 

Indoor navigation is an important application to provide the 
positioning service to the indoor users, where the Global 
Navigation Satellite Systems such as GPS struggle to work 
reliably. Current indoor positioning systems either provide 
their own infrastructure, or rely on existing ones indoors. 
The former may offer highly accurate positions using 
expensive customised hardware (Want et al., 1992; Priyantha, 
2005; Holm, 2009). The latter are affordable, yet their 
accuracies are not too great. Amongst the infrastructure-free 
category is location fingerprinting, which has been widely 
considered as one of the most efficient indoor tracking 
methods with good positioning accuracy to date (Bahl  
and Padmanabhan, 2000; Youssef and Agrawala, 2005;  
 

Weber et al., 2010; Wang et al., 2015). Fingerprinting-based 
approaches make use of the ubiquitous indoor WiFi network 
to deliver the tracking service. 

However, most previous fingerprint-based systems 
operated in an active tracking context, where the user submits a 
new WiFi signal sample for the system to discover his current 
position. This paper considers fingerprinting in a passive 
tracking scenario, where the system has the permission to 
monitor the user positions continuously to react in a timely 
manner when his position changes (i.e. to open the door, to 
switch off the light [Dey et al., 2000; Kim, 2011; Subrt and 
Pechac, 2012]). Crucially, with passive monitoring, the 
system is guaranteed to have access to a sequence of the 
signal data, which provides useful insights into the walking 
trajectory. In addition, these users normally have established  
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presence in the building, hence their personal routines should 
have been well-observed to help the system predict their 
intended travelling path in advance. 

To achieve this goal, the paper will present a novel data 
set called the ‘routine database’ to reflect the user’s walking 
routine, based on the magnetic field data. The benefit of this 
approach and the details of the implementation will be 
discussed in the remaining sections of this paper. Overall, 
the proposed approach offers the following benefits. 

i Magnetic field strength is used instead of the WiFi 
readings for fingerprinting.  

ii The user’s personal travelling history is taken into 
account to predict his walking route. 

iii The system uses a sequence of real-time signal data to 
make the positioning prediction. 

2 Extra information from the magnetic field 

This section explores the use of the indoor magnetic field 
for fingerprinting. It only examines the features that are 
most relevant to fingerprinting, including the sensitivity and 
the uniqueness. More detailed experiments of the indoor 
magnetic field data can be found in Li et al. (2012), Kim  
et al. (2012) and Xie et al. (2014). 

2.1 How to measure the magnetic field? 

An Android phone, one of the most popular devices to 
perform fingerprinting, was used to collect the magnetic 
field for all experiments in this paper. The geomagnetic 
field sensor on the Android phone measures the strength and 
the direction of the magnetic field at a point in space, where 
the phone is held. This measure is presented as a three-
dimensional vector  = , ,m x y z


, where x, y, z (measured in 

microTesla or T) are the ambient strength of the magnetic 
field in the corresponding axis (see Figure 1). The fastest 
sampling frequency on the experimented Nexus 5 phone 
was about three samples per second.  

It is important to note that these axes are relative to the 
position of the mobile phone in space. Therefore, the 
magnitude of each axis may differ as the device’s orientation 
changes, even when it stays in the same spot. The 
accelerometer included on the phone may be used to detect the 
direction of the gravity, which helps to deduct the 3D 
position of the phone. However, since the focus of this 
paper is mainly about the magnetic field, this idea is left out 
for future work. A simple solution to this problem is to 
combine the Magnetic Field Vector (MFV) into one scalar 
magnitude as follows (see equation (1)). 

 2 2 2=m x y z T 


 (1) 

However, with this approach, there is only measure left for 
each position. For the rest of this paper, this single scalar 
magnitude will be referred to as the magnetic field strength 
(MFS), and the whole magnetic field vector with all three 
magnitudes of the three axes will be referred to as the MFV. 

Figure 1 The three axes of the geomagnetic field sensor 

 

2.2 The sensitivity of the magnetic field strength 

The reliability of fingerprinting depends on the stability of 
the fingerprints. This is the ability to repeat the same 
measure at the same position at any time in the near future. 
This requirement is challenging, because the structure of the 
building may have changed, or because of other external 
factors that happened at the time of data measuring (e.g. 
moving people or furniture). The former may happen 
gradually which allows the system to cope with, although it 
may require the whole training data to be re-surveyed. The 
latter is normally caused by the indoor users’ movement, 
which may be avoided if the MFS has low sensitivity. Two 
experiments were performed to assess the sensitivity of the 
MFS in real time and over long periods of time. 

The first experiment measures the variation of the MFS 
at a fixed position. It is preferred that the variation is low to 
avoid the second challenge posed above. The experiment 
was performed over 6 hours during the working hours to 
reflect a busy environment, with many people walking in 
the building. Compared to the WiFi RSS, the MFS varied 
much less rapidly in its measurement unit in fixed positions. 
This experiment also suggested that the stronger the field 
strength was (the closer it is to the magnetic source), the 
more stable the MFS was, which was exactly the opposite of 
the WiFi RSS, where strong RSS was more sensitive than 
weak one (see Figure 2). 

The second experiment assesses the repeatability of the 
MFS at the same positions. For this experiment, 15 
positions in the building were marked with duck tape. They 
were revisited weekly, over one month to measure the MFS. 
Only five measures were taken at each observation point, 
and the average was used for this experiment. It was 
suggested that the variation was minimal, compared to the 
WiFi RSS observed at the same locations, with up to only 
3 T for the positions with strong MFS, and up to 4 T for 
other positions with weak MFS (see Figure 3). Such 
difference was well-within the short-term variation range of 
the magnetic field reported in the last experiment. Also, 
there might be a slight displacement of the phone’s position 
when the experiment took place, which explains this small 
change. 

In summary, the magnetic field has low sensitivity and 
is highly repeatable with time, compared to the highly 
volatile WiFi RSS. The major difference of the WiFi RSS 
and MFS is that strong MFS was observed to be more 
robust than weak one, whereas strong WiFi RSS was more 
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sensitive than weak RSS. This is an important suggestion  
to apply the magnetic field to fingerprinting, since most 
positioning systems would favour the strong signals. 

Figure 2 Histograms of the WiFi RSS and MFS in fixed positions 
from the same magnetic source and AP, over 6 hours 
during working hours. Strong MFS was more robust than 
weak MFS. Strong WiFi RSS was less robust than weak 
WiFi RSS (see online version for colours) 

 

(a) Weak magnetic field strength from a central heater measured  
at a fixed position. It varied from 31 to 37 T (7 T variation).  

The normalised range is [0.84, 1] 

 

(b) Strong magnetic field strength measured from the same central 
heather at a different fixed spot. It varied less between 155 and 

159 T (5 T variation). The normalised range is [0.97, 1] 

 

(c) Weak WiFi RSS from a single AP varied from –85 to –93 dBm 
(9 dBm variation). The normalised range is [0.91, 1] 

 

 

Figure 2 Histograms of the WiFi RSS and MFS in fixed positions 
from the same magnetic source and AP, over 6 hours 
during working hours. Strong MFS was more robust than 
weak MFS. Strong WiFi RSS was less robust than weak 
WiFi RSS (see online version for colours) (continued) 

 

(d) Strong WiFi RSS from the same AP varied much more  
from –30 to –48 dBm (19 dBm variation). The normalised  

range is [0.62, 1] 

Figure 3 The change of the MFS and WiFi RSS at 15 observation 
points over one month. Strong MFS was slightly less 
sensitive, while strong WiFi RSS was more sensitive. 
MFS sequences were highly correlated, while WiFi RSS 
ones were not 

 

(a) MFS change over time 

 

(b) Pairwise comparison of MFS sequences with Pearson 
correlation. The closer it is to 1, the more similar the two 

sequences are 
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Figure 3 The change of the MFS and WiFi RSS at 15 observation 
points over one month. Strong MFS was slightly less 
sensitive, while strong WiFi RSS was more sensitive. 
MFS sequences were highly correlated, while WiFi RSS 
ones were not (continued) 

 

(c) WiFi RSS change over time 

 

(d) Pairwise comparison of WiFi RSS sequences with Pearson 
correlation. The closer it is to 1, the more similar the two sequences are 

2.3 The uniqueness of the magnetic fingerprints 

The positioning accuracy of fingerprinting relies on how 
unique the surveyed fingerprints are. If all the training 
examples are similar, it will be challenging for any algorithm to 
use them to estimate the user position. With the magnetic field, 
the building is made of large ferrous metal structures (i.e. pipes, 
steel shells) which greatly distort the magnetic readings at 
many indoor positions (see Figure 5). However, their influence 
is mostly local, and the greater the anomalies, the more unique 
the magnetic fingerprint is. 

The major challenge when using the magnetic data for 
fingerprinting is that it only contributes a maximum of three 
measurements corresponding to the magnitude of the three axes 
for each fingerprint, whereas the WiFi signal provides a big 
vector of many RSS readings from several nearby WiFi APs. A 
single walk through the ground floor of the test bed exposed 
several different positions with a similar MFV, in which the 
difference in the magnitude of each axis was just 2 T  
(see Figure 4).  

For this reason, the magnetic field alone should not be 
employed to represent a single position, as in the case with the 
WiFi RSS. To take advantage of the robust magnetic measure, 
however, this paper proposes to merge them into a long 
sequence to represent a walking trajectory, which is much more 
distinctive. Intuitively, it is less likely to have two different 
trajectories with the same magnetic field representation. These 

trajectories form the user’s routine database to be explored in 
the next section.  

Figure 4 The magnitude of each of the three axes measured from 
a single walk through non-repeated positions on the 
ground floor of the test bed. The black circle pinpoints 
the positions with a similar reading 

 

(a) The walking trajectory 

 

(b) The magnetic readings 

Figure 5 Magnetic field strength is more resilient than WiFi 
measurement from its transmitting shape. Distance-wise, 
WiFi coverage is far greater than magnetic field, from a 
single power source 

 

(a) The propagation of WiFi RSS from a single AP in an office. The 
non-uniform signal coverage was caused by signal passing through 

doors and walls. Positions further down the corridor may still see the 
AP, although the signal was relatively weak 
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Figure 5 Magnetic field strength is more resilient than WiFi 
measurement from its transmitting shape. Distance-wise, 
WiFi coverage is far greater than magnetic field, from a 
single power source (continued) 

 

(b) Magnetic field strength from a central heater attached on  
the wall in the same indoor corridor. It provides very fine scale 

reading over short distance 

3 The personal routine database 

In addition to the fingerprinting database, a routine database is 
introduced for each user. This new database describes the 
user’s travelling history in the form of the frequently visited 
places, and the routes amongst them. Since each user normally 
has different preferred trajectories, he should have his own 
routine database. Each training example of the routine database 
represents a walking trajectory, whereas each training example 
in the fingerprinting database represents a single position. The 
training trajectory is a sequence of continuous MFV readings, 
mapped to their Cartesian coordinates. It is essential to clarify 
that the main purpose of this routine database is not to 
substitute the fingerprinting counterpart, but to provide prior 
knowledge to predict where the user may go next. The 
fingerprinting database will still be needed when the user takes 
a completely new route, which has not been recorded in the 
routine database. This routine database was introduced based 
on three observations.  

i The indoor user often takes the same route to travel 
between familiar places.  

ii The user often walks in a straight path.  

iii For a moving user, there is often not enough time for 
the tracking system to collect multiples readings at 
every single position in real time.  

This section outlines the process of generating the routine 
database, and the formal model of such database. 

3.1 The offline phase to generate the routine 
database 

Initially, the routine database is generated manually in the same 
manner as the fingerprinting database. The two differences are 

that the magnetic field is collected instead of the WiFi RSS, 
and each training example in the routine database is a sequence 
of MFV. The expert first identifies the route he wants to cover. 
He then uses an Android phone (with the app described in 
Section 4.1) to record the magnetic data at different positions 
along the route, and provides them with the corresponding 
Cartesian labels. At each position, the magnetic data should 
also be measured several times and an averaged measure is 
computed, although the number of repeated measures need not 
be as high as in the case with the WiFi RSS, because of the low 
variation of the magnetic field as previously discussed in 
Section 2.2. The starting and ending positions of the trajectory 
are also labelled by the room or office number, so that the 
system can provide a human-readable response when needed. 
The only criterion the expert should consider at this phase is 
how long the gap between the two consecutive positions in the 
trajectory is. Ideally, it is preferred that this gap is small. The 
granularity of the fingerprinting database can be used as a 
reference to decide this gap (e.g. 1 metre between consecutive 
positions). A method to compare two trajectories with different 
gaps will be discussed in the next section. The expert will 
attempt to cover as many trajectories as possible, which is 
similar in the sense that he also tries to cover as many 
individual training positions for the fingerprinting database as 
possible. 

It may also be useful to incorporate the user’s personal 
timetable into his routine database, by looking for the 
starting and ending positions of the events on the calendar. 
However, such approach is beyond the scope of this paper. 
For the experiments described here, the routine database is 
manually generated by the user to reflect his personal 
routine. 

3.2 Modelling the routine database 

Without any loss of generality, the routine database  
RD is formally modelled as a set of M examples 

 1= , , MRD T T . Each training example  1= , ,i KT R R  

 1 i M   represents a walking route, where  1jR j K   

is the data of the position jth along the route, with K is the total 

number positions on the route. Each position  = ,j j jR MFV L
 

 

contains the magnetic field vector  = , ,jMFV x y z


 recorded 

at that position, along with its Cartesian label  = ,j j
j x yL L L


, 

with x, y, z is the magnitude (T) of the three axes. 
The task is, given a magnetic sequence without the 

Cartesian label  1, , LMFV MFV
 

 , the system finds the best 

training trajectory that matches this sequence. 

3.3 Estimating the user trajectory with the  
routine database 

The user will have an app running in the background to 
collect the magnetic data automatically. This is also the 
common assumption for most passive monitoring systems. 
The recording process is triggered when the accelerometer 
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readings are above a certain threshold for a window period 
of a few seconds which indicates that the user is moving 
(see Figure 6). This same process will stop when the user no 
longer moves, for which the accelerometer readings are within 
the threshold for a window period of time. It is worth noting 
that the use of accelerometer in this paper is basic, although 
these accelerometer measures can tell more information about 
the user movements as in WiFi Simultaneous Localisation and 
Mapping (SLAM) research (Martin et al., 2010; Kim et al., 
2012; Wang et al., 2012; Faragher and Harle, 2013).  

When triggered, the magnetic data are recorded 
continuously to generate a real-time trajectory. It may be 
possible that some false recordings will get through when 
the phone is momentarily picked up (e.g. to make a call). 
This issue may be avoided by setting an initial threshold for 
the trajectory’s length, so that the prediction module will 
only engage when the trajectory has accumulated at least  
a certain amount of data. This approach is left for future 
research. 

As the user travels, the system assumes that the training 
trajectory with the closest match for the current real-time 
sequence is the correct route. This assumption, in turn, tells 
the system what the potential destination that the user may 
arrive at. However, the system does not stick to a single 
predicted trajectory. Throughout the journey, the user’s 
magnetic sequence gets larger, and also becomes more 
unique. Every time a new reading arrives, the system 
recalculates the measure to the training examples to find a 
better trajectory, if any. Therefore, the potential destination 
is dynamically adjusted as the user navigates the building. 

To compare the difference of two magnetic sequences, 
this paper employs Dynamic Time Warping (DTW). The 
benefits of DTW are to mitigate the difference in the 
measuring time of the training and real-time sequences, the 
ability to compare signal sequences of different lengths, and 
most crucially is to eliminate the temporal variance in 
walking speed (Müller, 2007; Subbu et al., 2011). The 
smaller the DTW measure is, the closer the two trajectories 
are. The variant of DTW employed in this paper is called 
open-end DTW (OE-DTW) (Giorgino, 2009). Normal DTW 
will stretch the shorter sequence to match the longer one up 
until the end, for which this OE-DTW version relaxes the 
endpoint constraint. It serves the purpose of this paper 
better, because in the early stage of the journey, the user’s 
MFV sequence is short, and may introduce certain bias 
when compared to the full training trajectories, even though 
they start from the same position. In principle, OE-DTW 
achieves its target by constructing different incomplete 
versions of the longer sequence, and picks the best match. In 
order to compare the DTW measure at different points of 
the journey, these measures will be normalised by dividing 
with the length of DTW aligned sequence. For the rest of 
the paper, the term OE-DTW will be simply referred to as 
DTW, and DTW measure means normalised OE-DTW 
measure. 

Figure 7 demonstrates an example of this estimation 
process in real time. A video demonstrating this process can  
 
 

be viewed at http://www.cs.rhul.ac.uk/~wruf265/dtw.mp4. 
The route prediction algorithm with the routine database is 
summarised below (see Algorithm 1).  

If the DTW measures between the real-time sequence 
and all training trajectories are low, in other words, no 
training trajectory matches the current sequence, the system 
will simply make a single position-by-position prediction 
with the fingerprinting database. This situation may happen 
because the user is relatively new to the building, or because 
his walking routines have not been well-recorded. 

Algorithm 1: Estimating the trajectory with the routine 
database 

Data: Routine database with M training trajectories  1, , MT T .

Result: Route prediction. 

while user is still moving do  

     read Magnetic field vector kMFV


 at current 

       location k; 

    /* append it into the magnetic sequence 

          */ 

    cur cur kmag mag MFV 


; 

   /* Find the closest training trajectory 

        */ 

   min = ; 

   1refT T ; 

   for = 2i M  do 

         if  , mini curDTW T mag <  then 

              min ,i curDTW T mag ; 

             ref iT T ; 

        end 

   end 
   return Tref 

end 

Figure 6 Acceleration reading with the phone in the trouser 
pocket. When the device is static, the reading is around 
9.8 m/s2, which is equivalent to the earth’s gravitational 
force (Heiskanen and Meinesz, 1958) (see online 
version for colours) 
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Figure 7 An example of the dynamic route prediction with the 
routine database. The three training trajectories were 
Kitchen-bound, Lecture room-bound, and Toilet-bound. 
The matching number on the left is calculated by DTW 
and is scaled to [0, 1] for demonstration purpose 

 

(a) The user starts moving from his office. The blue line 
demonstrates the user path 

 

(b) The red line shows the predicted route 

 

(c) However, the user turns to a different route in midway. The 
matching measure dropped as he navigates away from the 

predicted route (kitchen) 

 

Figure 7 An example of the dynamic route prediction with the 
routine database. The three training trajectories were 
Kitchen-bound, Lecture room-bound, and Toilet-bound. 
The matching number on the left is calculated by DTW 
and is scaled to [0, 1] for demonstration purpose (continued) 

 

(d) The system switches to the next matching route (lecture room) 

4 Evaluation of performance 

This section describes the real-world experiments of the 
proposed technique. The R implementation of OE-DTW was 
used to conduct the experiments (http://cran.r-project.org/web/ 
packages/dtw/ – last accessed in September 2016). 

4.1 Test bed 

Our office building has a 48.1 metres  45.7 metres floor plan, 
where the magnetometer data were collected (see Figure 8). 
There are nine WiFi APs inside the building, and more than 30 
APs in nearby buildings. The smartphone used to collect data 
was the LG Nexus 5 (Quad-core 2.3 GHz). The PC server has 
an Octa-core Intel i7 3.9 GHz CPU. The Android app we 
designed can run silently in the phone’s background to collect 
WiFi and magnetometer data (see Figure 9). It uses the 
accelerometer to determine if the user is static, and 
automatically slows down the scanning speed to prolong 
battery power (see Table 1). 

Table 1 Comparison of the battery and memory consumption of 
our app and other popular apps. For one charging cycle, 
our app ranks fourth on the least battery consumption 
list, and second on the least memory consumption list 

Application Power use (%) Mem. use (MB) 

Skype 2 94 

Hangouts (SMS) 4 65 

Chrome 7 83 

Our app 8 29 

Gmail  14 94 

WhatsApp 19 21 

Google Maps 24 98 
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Figure 8 The interiors of the test bed. All measurements were 
carried out during daytime 

 

(a) The corridor in the South wing 

 

(b) The pathway in the East wing 

 

(c) The central heater which emits strong magnetic  
reading up to 80 T 

 

(d) The pillar which emits strong magnetic reading up to 160 T 

Figure 9 The client and server’s interface 

 

(a) The Android app used to collect the magnetic field strength. By 
default, it uploads the data onto the server every 24 hours. The normal 
scanning speed is 1 second, while the fastest option aims to collect data 

continuously as soon as the previous scan finishes 

 

(b) The main control server can see who is connected, and their 
information. It stores the routine database. Each user has a unique ID 
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4.2 Criteria of evaluation for the routine database 

Owing to the difficulties in recruiting more experts to generate 
the routine database for many users, this paper only has one 
routine database with 50 training trajectories, covering all three 
corridors on the ground floor of the test bed, with the starting 
and ending points in different offices (see Figure 10). In 
particular, the longest trajectory has 62 MFV measures, and the 
average length is 34. The magnetic field data were collected 
with the phone held in the user’s hand at chest level, and the 
impact of the device’s orientation is assumed to be negligible.  

The test set contains 23 test trajectories measuring 
separately at different times from the training set, for which ten 
of them are fully covered in the training set (see Figure 11). For 
every fully observed test trajectory, there are at least three 
training trajectories that start from the same position.  

The other ten test trajectories are partly covered so that 
only the beginning portion of the route was recorded in the 
training set. These routes either finished in unknown positions 
or the remaining half of their trajectories was not observed  
(see Figure 12). 

The remaining three test routes are completely new 
trajectories, which were recorded two floors above the training 
space in the same building (see Figure 13). There is no 
information of these routes in the training database. 

Using this routine database, the paper aims to address 
the following questions. 

1 How well does the routine database predict the route 
and the potential destination? The main purpose of the 
routine database is to estimate the user’s trajectory and 
destination. Therefore, it is natural to assess how well it 
performs, in terms of how quickly the system picks the 
correct trajectory and how often the system switches 
trajectory during the journey.  

2 Can the routine database improve the accuracy of the 
single positioning prediction? If the routine database 
identifies the correct route the user is taking, can it also 
improve the positioning prediction, compared to the 
result produced by the fingerprinting database?  

For the experiments in this paper, the test trajectory is 
broken down into ordered individual MFV which represents 
a single position on the trajectory. Each MFV will be 
accumulated one-by-one into a sequence to simulate a 
walking user in real time. At each step, the system computes 
the DTW measure of the current sequence to every training 
trajectory. The training trajectory with the smallest measure 
will be chosen as the predicted route. 

Figure 10 Coverage of all training routes (see online version for colours) 

 

Figure 11 The ten fully observed test trajectories. The blue circle denotes the starting point (see online version for colours) 

 

(a) From 125 to 115                                                                (b) From 106 to 125 
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Figure 11 The ten fully observed test trajectories. The blue circle denotes the starting point (see online version for colours) (continued) 

 

(c) From 19 to 99                                                               (d) From 19 to 199 

 

(e) From 110 to 199                                                     (f) From 107 to 119 

 

(g) From 115 to 106                                                       (h) From 115 to 112 
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Figure 11 The ten fully observed test trajectories. The blue circle denotes the starting point (see online version for colours) (continued) 

 

(i) From 199 to 112                                                           (j) From 199 to 125 

Figure 12 The ten partly observed test trajectories. The blue circle denotes the starting point (see online version for colours) 

 

(a) From 125 to 119                                                       (b) From 112 to 127 

 

(c) From 109 to 99                                                            (d) From 199 to 103 
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Figure 12 The ten partly observed test trajectories. The blue circle denotes the starting point (see online version for colours) (continued) 

 

(e) From 126 to 120                                                           (f) From 121 to 103 

 

(g) From 115 to 199                                                         (h) From 115 to 99 

 

(i) From 104 to 119                                                          (j) From 126 to 199 
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Figure 13 The three completely new test trajectories measured on a different floor. The blue circle denotes the starting point (see online 
version for colours) 

   

(a) From 357 to 347                                                       (b) From 336 to 325 

 

(c) From 336 to 348 

4.3 The destination and route prediction evaluation 

The first experiment evaluates the accuracy of the route and 
the destination prediction. Two observations stand out from 
this experiment. Firstly, in terms of destination prediction, 
the accuracy was not particularly high. At all 317 positions 
on the ten fully observed test trajectories, the system 
managed to suggest the correct destination for only 156 
positions, which was less than 50% (see Figure 14). This 
result is understandable, because there are several training 
trajectories that start from the same position for each test 
trajectory. Thus, the system was not always able to pick the 
training trajectory that leads to the correct destination. 
Unsurprisingly, none of the remaining 13 partly observed 
and new test trajectories suggested the correct destination.  

However, in terms of route prediction, each position is 
deemed correctly predicted as long as the predicted trajectory 
overlaps with the correct trajectory from the beginning up until 
the current position. For example, considering test trajectory 
106-125, which goes from office 106 in the lower-left to office 
125 in the top-right (see Figure 11 (b)), there are three training 
trajectories that start from the same office with this test 
trajectory but end in different positions (see Figure 15).  

In this experiment, when the user’s sequence was short, the 
system matched it to the shortest training route 106-115 (see 
Figure 15 (a)). Although the user’s actual route was 106-125, 
this taken route overlaps the predicted route 106-115. In other 
words, the user was actually following the same trajectory up 
until this point. In terms of positioning prediction, this 
predicted route did not make much difference, which will be 
evaluated in the next section. When the user’s magnetic 
sequence grew larger as he went past room 115 – the 
destination of the current predicted route, the system 
recalculated the DTW measure and found the correct matching 
route 106-125. Overall, at all 317 positions on the ten fully 
observed test trajectories, the system managed to suggested the 
correct trajectory for 286 positions, which was almost 90% (see 
Figure 16). This result also illustrated that all the wrong route 
predictions happened at early positions when the sequence was 
short. For this routine database, all test positions with at least 
nine MFVs found their correct routes.  

The second experiment evaluates the value of the DTW 
measure between the test trajectories and the training 
trajectories. For all ten fully observed test trajectories, the 
DTW measure at each position on the test trajectory was 
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relatively low, with the highest measure recorded at just 12.6 
(T) (see Figure 17 (a)). This low measure is understandable 
because there are several training trajectories that match these 
fully observed test trajectories. For the ten partly observed test 
trajectories, the DTW measures were also low, up until the 
point where the user strayed away from all training trajectories, 
from which the DTW measure quickly grew up (see Figure 17 
(b)). For the three completely new test trajectories, the DTW 
measures went up rapidly right from the very beginning with 
the biggest measure recorded at 116.7 (T), because there was 
no training trajectories that match these new test trajectories 
(see Figure 17 (c)). Table 2 summaries the DTW measures for 
the three categories of the test trajectories.  

This experiment also exposed how often the system 
changed trajectory during the journey, since it always 
picked the training trajectory with the lowest DTW measure 
to the current sequence at each position. Figure 18 pointed 
out that for this routine database, when the test trajectory 
had less than ten MFVs, the system switched routes about 
five times on average across all 23 test trajectories. In  
 

contrast, when the length of the test trajectory was within 
[10, 20] MFV, the system switched route only two times on 
average. For all ten fully observed test trajectories, there 
were four routes being used on average throughout each test 
trajectory. Overall, the longer the test trajectory was, the 
more successful the system could match it to the correct 
training trajectory, and the less frequent the system switches 
routes.  

Table 2 Comparison of the normalised DTW measure for the 
test trajectories 

 
Max DTW 
measure 

Min DTW 
measure 

Average DTW 
measure 

Fully observed 
test trajectories 

12.6 3.2 6.8 

Partly observed 
test trajectories 

84.7 3.3 31.2 

Completely new 
test trajectories 

116.7 5.4 84.1 

Figure 14 Destination prediction accuracy with the routine database. Each horizontal line corresponds to the test trajectory. Each cross 
demonstrates a position along the journey where the destination prediction is correct 

 

Figure 15 The three training trajectories that start from office 106. The blue circle denotes the starting point (see online version for colours) 

   

(a) Training route 106-115                                                       (b) Training route 106-125 
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Figure 15 The three training trajectories that start from office 106. The blue circle denotes the starting point (see online version for colours) 
(continued) 

 

(c) Training route 106-199 

Figure 16 Route prediction accuracy with the routine database. Each horizontal line corresponds to the test trajectory. Each cross 
demonstrates a position along the journey where the route prediction is correct 

 

Figure 17 The minimum DTW measure at each position on the test trajectory throughout the journey 

   

 

 

 

(a) Fully observed test trajectories. The  
DTW measure is relatively low for all  
positions 

(b) Party observed test trajectories. The DTW measure 
remains low until the midway positions where the user 
took a new route
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Figure 17 The minimum DTW measure at each position on the test trajectory throughout the journey (continued) 

 

(c) New test trajectories. The DTW measure increases rapidly from the very beginning 

Figure 18 How often the system switches route, throughout the journey of the whole test trajectory 

  

(a) Test trajectory 125-115                                                                       (b) Test trajectory 106-125 

 

(c) Test trajectory 19-99                                                                     (d) Test trajectory 19-199 
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Figure 18 How often the system switches route, throughout the journey of the whole test trajectory (continued) 

  

(e) Test trajectory 110-199                                                                (f) Test trajectory 107-119 

  

(g) Test trajectory 115-106                                                                 (h) Test trajectory 115-112 

  

(i) Test trajectory 199-112                                                                (j) Test trajectory 199-125 

4.4 Single positioning estimation evaluation 

Although the main purpose of the routine database is to 
predict the potential walking trajectory and the destination, 
it is interesting to investigate the positioning accuracy while 
the user is travelling on the predicted route. At any stage of 
the journey, the user’s position will be regarded as the 
Cartesian label of the last position on the training trajectory 
returned by DTW. It is worth recalling that the OE-DTW 
variant of DTW employed in this paper tests different  
 

incomplete versions of the training trajectory by relaxing the 
endpoint constraint to find the best matched version. For 
this experiment, all 317 positions on the ten fully observed 
test trajectories will be used as test positions. To compare 
the positioning estimation with the fingerprinting database, 
the WiFi RSS vector at each test position was used to 
estimate the user position. 

Figure 19 demonstrates a remarkable positioning accuracy 
using the routine database with up to 2.2 metre positioning 
error, 95% probability with the routine database, compared to  
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3.5 metres, 95% probability with the fingerprinting database. 
This result emphasises that when the system is certain  
of the user’s walking trajectory, it can estimate the user’s 
whereabouts using the individual positions recorded on the 
training trajectories much quicker with higher accuracy. In 
contrast, the fingerprinting approach must go through the 
whole training database to make prediction for every position.  

There are two reasons why the estimated position using 
the routine database may not perfectly match the true 
position. Firstly, the training trajectory does not line up 
completely with the real-time trajectory. The version of the 
training trajectory returned by DTW may be a few measures 
before or after the real-time trajectory. Secondly, there are 
many training trajectories starting in the same position, the 
current predicted one is not necessarily the correct one. 

Figure 19 Performance accuracy of single position estimation 
with the routine database 

 

5 Related work 

The earliest use of the magnetic field for indoor positioning 
was first seen in robotics navigation. It helps the robot orientate 
itself by maintaining a correlation to the magnetic North (Jung 
et al., 2013; Suksakulchai et al., 2000). However, the structure 
of most buildings greatly distorts the direction of the magnetic 
field (i.e. compass does not work reliably indoors). 

Some early work suggested the use of the magnetic field 
with fingerprinting. However, they shared the same idea that 
the position’s fingerprint is directly represented by the 
magnetic data (Chung et al., 2011; Li et al., 2012; Kim et al., 
2012; Subbu et al., 2013; Haverinen and Kemppainen, 2009). 
This approach is challenging, as explained earlier, since the 
magnetic field only contributes a maximum of three measures 
per location. The work described in this paper makes use of the 
robust magnetic data via a sequence of measures. 

Most earlier works in fingerprinting were considered in an 
active tracking context, to provide the positioning service to the 
user when requested (Bahl and Padmanabhan, 2000; Youssef 
and Agrawala, 2005; Weber et al., 2010; Wang et al., 2015). 
This paper provides an alternative approach to monitor the 
user’s positions continuously in the background. The proposed 
system predicts not only the user’s position, but also the 
walking route the user may take in advance. This opens up new 
possibilities for smart applications, which were not achievable 
with only a single position. 

While the WiFi signal and the magnetic field data are 
popular for fingerprinting, they have also been previously 
applied in other fields, such as swarm intelligence, and 
hardware security (Abraham et al., 2006; Bi et al., 2014;  
Bi et al., 2015). 

6 Summary and further work 

Traditional fingerprinting has normally been considered as a 
tracking service to guide the user to his wanted destination. 
This paper considered fingerprinting as a sentient service  
for the regular users to allow the system to predict their 
intended walking route and the potential destination in 
advance. The paper showed that such objective was possible 
by using the magnetic field data to generate a routine 
database for the user. The major difference of the proposed 
approach and other fingerprint-based ones is that the real-
time readings are accumulated as a sequence to distinctively 
represent the user’s walking trajectory. Using this routine 
database, the system can predict the user position with 
higher accuracy than using just the fingerprinting database. 
The paper also demonstrated that the longer the system 
observes the magnetic field data, the more accurate the 
predicted routes are, and the less frequently the system 
changes route during the journey. 

The limitation of the proposed approach is that it is more 
feasible for the buildings with narrow corridors (e.g. those 
used in the test bed). It was not designed to identify the 
user’s position in a large area (e.g. in the middle of the 
lecture hall), for which the fingerprinting database will be 
more suitable. 

Lastly, some practical discussions are outlined here. 
These discussions are not presented in the main body to 
maintain the focus of the paper. 

i How does the system cope when the user temporarily 
turns off his phone, or when he takes a break during his 
journey? When the walking route is broken, the system 
simply makes a single position-by-position prediction 
using the fingerprinting data set.  

ii What happens if the user turns on the tracking app in 
the middle of his journey? With the current design, the 
system predicts the trajectory at the beginning of the 
user’s journey. It may be possible to make prediction 
midway, although this concept has not yet been 
examined in this paper.  

iii Why not use a universal routine database for every user 
in a similar manner as the fingerprinting database? 
Firstly, the paper assumes that most users often follow 
their own preferred path to navigate the building. 
Secondly, a universal database may contain too many 
trajectories, for which certain paths may not be used at 
all by some users.  

We think this paper has laid the foundation for using the 
routine database to predict the walking trajectory. Some 
potential further works to improve this concept are outlined 
below. 
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i The personal routine database can be further personalised 
by adding the approximate starting time for each journey. 
Depending on the user’s timetable, he may favour one 
particular route at a certain time, and this extra information 
may improve the accuracy of the decision-making process. 
More importantly, the timetable also tells how often the 
event takes place, which can provide the initial value for 
the frequency of the trajectory. For example, the timetable 
indicates the user has four lectures per week, thus the 
F(office, lecture) = 4.  

ii It may also be useful to set a threshold for the user’s 
real-time trajectory, so that the prediction engine only 
engages when the trajectory reaches a certain length. 
This approach has two benefits. Firstly, it guarantees 
that the accumulated user trajectory is long enough to 
avoid many initial similar matches with the training 
trajectories. Secondly, it avoids the scenario where the 
recording process is falsely triggered by the user who 
temporarily picks up the phone to make a call.  

iii Since the routine database is constantly updated with 
new WiFi RSS and magnetic field data, it is also a great 
resource for crowdsourcing. The training examples 
from the fingerprinting database may be updated with 
the latest data extracted from the individual routes in 
the routine database.  

iv It may be beneficial to reduce the number of times the 
system has to search through the routine database by 
introducing a DTW measure threshold. There are two 
scenarios for this threshold. 

a) If the DTW measure between the current training 
trajectory and the real-time trajectory is below the 
threshold, the system believes that the user still 
follows the predicted route. Hence, it does not 
bother checking other training trajectories.  

b) If the measure rises above the threshold, the system 
believes that the predicted trajectory is no longer 
correct. It recalculates the measure to other training 
trajectories to find a better match.  

There are two parameters to consider here. Firstly, a DTW 
measure threshold needs to be decided in advance, so that 
the system knows when to drop the current predicted 
trajectory to find a better one. The challenges here are that if 
this DTW measure threshold is too low, the system keeps 
following the wrong training trajectory, although the user 
has turned to a new route. In contrast, if this DTW threshold 
is set too high, the system becomes too sensitive, and may 
drop the correct training trajectory because of the noises 
recorded in the real-time trajectory. Secondly, a time 
window parameter also needs to be considered to tackle the 
challenge with the magnetic noises. This time window 
ascertains that the system does not accidentally drop the 
correct training trajectory. Only when several low DTW 
measures are recorded within this window, the current 
training trajectory is dropped.  

References 

Abraham, A., Guo, H. and Liu, H. (2006) ‘Swarm intelligence: 
foundations, perspectives and applications’, in Nedjah, N. and 
Mourelle, L.D.M. (Eds): Swarm Intelligent Systems, Springer, 
New York, pp.3–25. 

Bahl, P. and Padmanabhan, V.N. (2000) ‘RADAR: an in-building RF-
based user location and tracking system’, Proceedings of IEEE 
Nineteenth Annual Joint Conference of the IEEE Computer and 
Communications Societies, Vol. 2, pp.775–784. 

Bi, Y., Gaillardon, P-E., Hu, X.S., Niemier, M., Yuan, J-S. and Jin, Y. 
(2014) ‘Leveraging emerging technology for hardware security – 
case study on silicon nanowire FETs and graphene SymFETs’, 
2014 IEEE 23rd Asian Test Symposium, IEEE, Hangzhou, China, 
pp.342–347. 

Bi, Y., Yuan, J.S. and Jin, Y. (2015) ‘Beyond the interconnections: 
split manufacturing in RF designs’, Electronics, Vol. 4, No. 3, 
pp.541–564. 

Chung, J., Donahoe, M., Schmandt, C., Kim, I-J., Razavai, P. and 
Wiseman, M. (2011) ‘Indoor location sensing using geo-
magnetism’, Proceedings of the 9th International Conference on 
Mobile Systems, Applications, and Services, ACM, Bethesda, 
MD, pp.141–154. 

Dey, A.K., Abowd, G.D. and Salber, D. (2000) ‘A context-based 
infrastructure for smart environments’, Managing Interactions in 
Smart Environments, Springer, Dublin, pp.114–128. 

Faragher, R. and Harle, R. (2013) ‘SmartSLAM – an efficient 
smartphone indoor positioning system exploiting machine learning 
and opportunistic sensing’, ION GNSS, Vol. 13, pp.1–14. 

Giorgino, T. (2009) ‘Computing and visualizing dynamic time 
warping alignments in R: the DTW package’, Journal of 
Statistical Software, Vol. 31, No. 7, pp.1–24. 

Haverinen, J. and Kemppainen, A. (2009) ‘Global indoor self-
localization based on the ambient magnetic field’, Robotics 
and Autonomous Systems, Vol. 57, No. 10, pp.1028–1035. 

Heiskanen, W.A. and Meinesz, F.A.V. (1958) The Earth and Its 
Gravity Field, McGraw-Hill Book Company, Inc., New York. 

Holm, S. (2009) ‘Hybrid ultrasound-rfid indoor positioning: 
combining the best of both worlds’, 2009 IEEE International 
Conference on RFID, IEEE, New York, pp.155–162. 

Jung, J., Lee, S., Kim, H., Park, B. and Myung, H. (2013) ‘Mobile 
robot relocation using ambient magnetic fields and radio 
sources’, 2013 13th International Conference on Control, 
Automation and Systems (ICCAS), IEEE, Gwangju, Korea, 
pp.1766–1768. 

Kim, S-I. (2011) ‘Agent system using multimodal interfaces for a 
smart office environment’, International Journal of Control, 
Automation and Systems, Vol. 9, No. 2, pp.358–365. 

Kim, S-E., Kim, Y., Yoon, J. and Kim, E.S. (2012) ‘Indoor positioning 
system using geomagnetic anomalies for smartphones’, 2012 
International Conference on Indoor Positioning and Indoor 
Navigation (IPIN), IEEE, Sydney, Australia, pp.1–5. 

Li, B., Gallagher, T., Dempster, A.G. and Rizos, C. (2012) ‘How 
feasible is the use of magnetic field alone for indoor positioning?’, 
2012 International Conference on Indoor Positioning and Indoor 
Navigation (IPIN), IEEE, Sydney, pp.1–9. 

Martin, E., Vinyals, O., Friedland, G. and Bajcsy, R. (2010) 
‘Precise indoor localization using smart phones’, Proceedings 
of the International Conference on Multimedia, ACM, 
Firenze, Italy, pp.787–790. 

Müller, M. (2007) Information Retrieval for Music and Motion, 
Springer, Berlin. 

Priyantha, N.B. (2005) The Cricket Indoor Location System, PhD 
Thesis, Massachusetts Institute of Technology. 



 Dynamic route prediction 35 

Subbu, K.P., Gozick, B. and Dantu, R. (2011) ‘Indoor localization 
through dynamic time warping’, 2011 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC), IEEE, 
Anchorage, AK, pp.1639–1644. 

Subbu, K.P., Gozick, B. and Dantu, R. (2013) ‘LocateMe: 
magnetic-fields-based indoor localization using smartphones’, 
ACM Transactions on Intelligent Systems and Technology 
(TIST), Vol. 4, No. 4, 27pp. 

Subrt, L. and Pechac, P. (2012) ‘Intelligent walls as autonomous 
parts of smart indoor environments’, IET Communications, 
Vol. 6, No. 8, pp.1004–1010. 

Suksakulchai, S., Thongchai, S., Wilkes, D. and Kawamura, K. 
(2000) ‘Mobile robot localization using an electronic compass 
for corridor environment’, 2000 IEEE International 
Conference on Systems, Man, and Cybernetics, Vol. 5, 
pp.3354–3359. 

Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M. and 
Choudhury, R.R. (2012) ‘No need to war-drive: unsupervised 
indoor localization’, Proceedings of the 10th International 
Conference on Mobile Systems, Applications, and Services, 
ACM, New York, pp.197–210. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang, B., Zhou, S., Yang, L.T. and Mo, Y. (2015) ‘Indoor 
positioning via subarea fingerprinting and surface fitting with 
received signal strength’, Pervasive and Mobile Computing, 
Vol. 23, pp.43–58. 

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992) ‘The active 
badge location system’, ACM Transactions on Information 
Systems (TOIS), Vol. 10, No. 1, pp.91–102. 

Weber, M., Birkel, U., Collmann, R. and Engelbrecht, J. (2010) 
‘Comparison of various methods for indoor RF fingerprinting 
using leaky feeder cable’, 2010 7th Workshop on Positioning 
Navigation and Communication (WPNC), IEEE, Dresden, 
pp.291–298. 

Xie, H., Gu, T., Tao, X., Ye, H. and Lv, J. (2014) ‘MaLoc: a practical 
magnetic fingerprinting approach to indoor localization using 
smartphones’, Proceedings of the 2014 ACM International Joint 
Conference on Pervasive and Ubiquitous Computing, ACM, 
Seattle, Washington, DC, pp.243–253. 

Youssef, M. and Agrawala, A. (2005) ‘The horus WLAN location 
determination system’, Proceedings of the 3rd International 
Conference on Mobile Systems, Applications, and Services, 
ACM, Seattle, Washington, DC, pp.205–218. 


