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Introduction

Weber et al., 2010; Wang et al., 2015). Fingerprinting-based
approaches make use of the ubiquitous indoor WiFi network

Indoor navigation is an important application to provide the
positioning service to the indoor users, where the Global
Navigation Satellite Systems such as GPS struggle to work
reliably. Current indoor positioning systems either provide
their own infrastructure, or rely on existing ones indoors.
The former may offer highly accurate positions using
expensive customised hardware (Want et al., 1992; Priyantha,
2005; Holm, 2009). The latter are affordable, yet their
accuracies are not too great. Amongst the infrastructure-free
category is location fingerprinting, which has been widely
considered as one of the most efficient indoor tracking
methods with good positioning accuracy to date (Bahl
and Padmanabhan, 2000; Youssef and Agrawala, 2005;

Copyright © 2017 Inderscience Enterprises Ltd.

to deliver the tracking service.

However, most previous fingerprint-based systems
operated in an active tracking context, where the user submits a
new WiFi signal sample for the system to discover his current
position. This paper considers fingerprinting in a passive
tracking scenario, where the system has the permission to
monitor the user positions continuously to react in a timely
manner when his position changes (i.e. to open the door, to
switch off the light [Dey et al., 2000; Kim, 2011; Subrt and
Pechac, 2012]). Crucially, with passive monitoring, the
system is guaranteed to have access to a sequence of the
signal data, which provides useful insights into the walking
trajectory. In addition, these users normally have established
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presence in the building, hence their personal routines should
have been well-observed to help the system predict their
intended travelling path in advance.

To achieve this goal, the paper will present a novel data
set called the ‘routine database’ to reflect the user’s walking
routine, based on the magnetic field data. The benefit of this
approach and the details of the implementation will be
discussed in the remaining sections of this paper. Overall,
the proposed approach offers the following benefits.

i Magnetic field strength is used instead of the WiFi
readings for fingerprinting.

it The user’s personal travelling history is taken into
account to predict his walking route.

iii  The system uses a sequence of real-time signal data to
make the positioning prediction.

2 Extra information from the magnetic field

This section explores the use of the indoor magnetic field
for fingerprinting. It only examines the features that are
most relevant to fingerprinting, including the sensitivity and
the uniqueness. More detailed experiments of the indoor
magnetic field data can be found in Li et al. (2012), Kim
et al. (2012) and Xie et al. (2014).

2.1 How to measure the magnetic field?

An Android phone, one of the most popular devices to
perform fingerprinting, was used to collect the magnetic
field for all experiments in this paper. The geomagnetic
field sensor on the Android phone measures the strength and
the direction of the magnetic field at a point in space, where
the phone is held. This measure is presented as a three-
dimensional vector 7 =(x,y,z), where x, y, z (measured in

microTesla or uT) are the ambient strength of the magnetic
field in the corresponding axis (see Figure 1). The fastest
sampling frequency on the experimented Nexus 5 phone
was about three samples per second.

It is important to note that these axes are relative to the
position of the mobile phone in space. Therefore, the
magnitude of each axis may differ as the device’s orientation
changes, even when it stays in the same spot. The
accelerometer included on the phone may be used to detect the
direction of the gravity, which helps to deduct the 3D
position of the phone. However, since the focus of this
paper is mainly about the magnetic field, this idea is left out
for future work. A simple solution to this problem is to
combine the Magnetic Field Vector (MFV) into one scalar
magnitude as follows (see equation (1)).

]| = \x* + y* + 2% (uT) (1)

However, with this approach, there is only measure left for
each position. For the rest of this paper, this single scalar
magnitude will be referred to as the magnetic field strength
(MES), and the whole magnetic field vector with all three
magnitudes of the three axes will be referred to as the MFV.
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Figure 1 The three axes of the geomagnetic field sensor

2.2 The sensitivity of the magnetic field strength

The reliability of fingerprinting depends on the stability of
the fingerprints. This is the ability to repeat the same
measure at the same position at any time in the near future.
This requirement is challenging, because the structure of the
building may have changed, or because of other external
factors that happened at the time of data measuring (e.g.
moving people or furniture). The former may happen
gradually which allows the system to cope with, although it
may require the whole training data to be re-surveyed. The
latter is normally caused by the indoor users’ movement,
which may be avoided if the MFS has low sensitivity. Two
experiments were performed to assess the sensitivity of the
MES in real time and over long periods of time.

The first experiment measures the variation of the MFS
at a fixed position. It is preferred that the variation is low to
avoid the second challenge posed above. The experiment
was performed over 6 hours during the working hours to
reflect a busy environment, with many people walking in
the building. Compared to the WiFi RSS, the MFS varied
much less rapidly in its measurement unit in fixed positions.
This experiment also suggested that the stronger the field
strength was (the closer it is to the magnetic source), the
more stable the MFS was, which was exactly the opposite of
the WiFi RSS, where strong RSS was more sensitive than
weak one (see Figure 2).

The second experiment assesses the repeatability of the
MFS at the same positions. For this experiment, 15
positions in the building were marked with duck tape. They
were revisited weekly, over one month to measure the MFS.
Only five measures were taken at each observation point,
and the average was used for this experiment. It was
suggested that the variation was minimal, compared to the
WiFi RSS observed at the same locations, with up to only
3 uT for the positions with strong MFS, and up to 4 uT for
other positions with weak MFS (see Figure 3). Such
difference was well-within the short-term variation range of
the magnetic field reported in the last experiment. Also,
there might be a slight displacement of the phone’s position
when the experiment took place, which explains this small
change.

In summary, the magnetic field has low sensitivity and
is highly repeatable with time, compared to the highly
volatile WiFi RSS. The major difference of the WiFi RSS
and MFS is that strong MFS was observed to be more
robust than weak one, whereas strong WiFi RSS was more
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sensitive than weak RSS. This is an important suggestion
to apply the magnetic field to fingerprinting, since most
positioning systems would favour the strong signals.

Figure2 Histograms of the WiFi RSS and MFS in fixed positions
from the same magnetic source and AP, over 6 hours
during working hours. Strong MFS was more robust than
weak MFS. Strong WiFi RSS was less robust than weak
WiFi RSS (see online version for colours)
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Figure 2  Histograms of the WiFi RSS and MFS in fixed positions
from the same magnetic source and AP, over 6 hours
during working hours. Strong MFS was more robust than
weak MFS. Strong WiFi RSS was less robust than weak

WiFi RSS (see online version for colours) (continued)
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Figure 3 The change of the MFS and WiFi RSS at 15 observation
points over one month. Strong MFS was slightly less
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ones were not
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Figure3 The change of the MFS and WiFi RSS at 15 observation
points over one month. Strong MFS was slightly less
sensitive, while strong WiFi RSS was more sensitive.
MEFS sequences were highly correlated, while WiFi RSS
ones were not (continued)
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2.3 The uniqueness of the magnetic fingerprints

The positioning accuracy of fingerprinting relies on how
unique the surveyed fingerprints are. If all the training
examples are similar, it will be challenging for any algorithm to
use them to estimate the user position. With the magnetic field,
the building is made of large ferrous metal structures (i.e. pipes,
steel shells) which greatly distort the magnetic readings at
many indoor positions (see Figure 5). However, their influence
is mostly local, and the greater the anomalies, the more unique
the magnetic fingerprint is.

The major challenge when using the magnetic data for
fingerprinting is that it only contributes a maximum of three
measurements corresponding to the magnitude of the three axes
for each fingerprint, whereas the WiFi signal provides a big
vector of many RSS readings from several nearby WiFi APs. A
single walk through the ground floor of the test bed exposed
several different positions with a similar MFV, in which the
difference in the magnitude of each axis was just 2 uT
(see Figure 4).

For this reason, the magnetic field alone should not be
employed to represent a single position, as in the case with the
WiFi RSS. To take advantage of the robust magnetic measure,
however, this paper proposes to merge them into a long
sequence to represent a walking trajectory, which is much more
distinctive. Intuitively, it is less likely to have two different
trajectories with the same magnetic field representation. These
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trajectories form the user’s routine database to be explored in
the next section.

Figure 4 The magnitude of each of the three axes measured from
a single walk through non-repeated positions on the
ground floor of the test bed. The black circle pinpoints
the positions with a similar reading
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Figure 5§

Magnetic field strength is more resilient than WiFi
measurement from its transmitting shape. Distance-wise,
WiFi coverage is far greater than magnetic field, from a
single power source (continued)
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(b) Magnetic field strength from a central heater attached on
the wall in the same indoor corridor. It provides very fine scale
reading over short distance

3 The personal routine database

In addition to the fingerprinting database, a routine database is
introduced for each user. This new database describes the
user’s travelling history in the form of the frequently visited
places, and the routes amongst them. Since each user normally
has different preferred trajectories, he should have his own
routine database. Each training example of the routine database
represents a walking trajectory, whereas each training example
in the fingerprinting database represents a single position. The
training trajectory is a sequence of continuous MFV readings,
mapped to their Cartesian coordinates. It is essential to clarify
that the main purpose of this routine database is not to
substitute the fingerprinting counterpart, but to provide prior
knowledge to predict where the user may go next. The
fingerprinting database will still be needed when the user takes
a completely new route, which has not been recorded in the
routine database. This routine database was introduced based
on three observations.

i The indoor user often takes the same route to travel
between familiar places.

ii  The user often walks in a straight path.

iii  For a moving user, there is often not enough time for
the tracking system to collect multiples readings at
every single position in real time.

This section outlines the process of generating the routine
database, and the formal model of such database.

3.1 The offline phase to generate the routine
database

Initially, the routine database is generated manually in the same
manner as the fingerprinting database. The two differences are

that the magnetic field is collected instead of the WiFi RSS,
and each training example in the routine database is a sequence
of MFV. The expert first identifies the route he wants to cover.
He then uses an Android phone (with the app described in
Section 4.1) to record the magnetic data at different positions
along the route, and provides them with the corresponding
Cartesian labels. At each position, the magnetic data should
also be measured several times and an averaged measure is
computed, although the number of repeated measures need not
be as high as in the case with the WiFi RSS, because of the low
variation of the magnetic field as previously discussed in
Section 2.2. The starting and ending positions of the trajectory
are also labelled by the room or office number, so that the
system can provide a human-readable response when needed.
The only criterion the expert should consider at this phase is
how long the gap between the two consecutive positions in the
trajectory is. Ideally, it is preferred that this gap is small. The
granularity of the fingerprinting database can be used as a
reference to decide this gap (e.g. 1 metre between consecutive
positions). A method to compare two trajectories with different
gaps will be discussed in the next section. The expert will
attempt to cover as many trajectories as possible, which is
similar in the sense that he also tries to cover as many
individual training positions for the fingerprinting database as
possible.

It may also be useful to incorporate the user’s personal
timetable into his routine database, by looking for the
starting and ending positions of the events on the calendar.
However, such approach is beyond the scope of this paper.
For the experiments described here, the routine database is
manually generated by the user to reflect his personal
routine.

3.2 Modelling the routine database

Without any loss of generality, the routine database
RD is formally modelled as a set of M examples

RD={T,...,T,,} . Each training example T, =(R,,...,R;)
(1<i< M) represents a walking route, where R, (1< j < K)
is the data of the position jth along the route, with K is the total

number positions on the route. Each position R; = (MF V., f/)
contains the magnetic field vector MFV, = (x, y,z) recorded
at that position, along with its Cartesian label L—, = (Li,Lj,),

with x, y, z is the magnitude (uT) of the three axes.
The task is, given a magnetic sequence without the

Cartesian label (MF Vi,...,.MFV, ) , the system finds the best

training trajectory that matches this sequence.

3.3 Estimating the user trajectory with the
routine database

The user will have an app running in the background to
collect the magnetic data automatically. This is also the
common assumption for most passive monitoring systems.
The recording process is triggered when the accelerometer
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readings are above a certain threshold for a window period
of a few seconds which indicates that the user is moving
(see Figure 6). This same process will stop when the user no
longer moves, for which the accelerometer readings are within
the threshold for a window period of time. It is worth noting
that the use of accelerometer in this paper is basic, although
these accelerometer measures can tell more information about
the user movements as in WiFi Simultaneous Localisation and
Mapping (SLAM) research (Martin et al., 2010; Kim et al.,
2012; Wang et al., 2012; Faragher and Harle, 2013).

When triggered, the magnetic data are recorded
continuously to generate a real-time trajectory. It may be
possible that some false recordings will get through when
the phone is momentarily picked up (e.g. to make a call).
This issue may be avoided by setting an initial threshold for
the trajectory’s length, so that the prediction module will
only engage when the trajectory has accumulated at least
a certain amount of data. This approach is left for future
research.

As the user travels, the system assumes that the training
trajectory with the closest match for the current real-time
sequence is the correct route. This assumption, in turn, tells
the system what the potential destination that the user may
arrive at. However, the system does not stick to a single
predicted trajectory. Throughout the journey, the user’s
magnetic sequence gets larger, and also becomes more
unique. Every time a new reading arrives, the system
recalculates the measure to the training examples to find a
better trajectory, if any. Therefore, the potential destination
is dynamically adjusted as the user navigates the building.

To compare the difference of two magnetic sequences,
this paper employs Dynamic Time Warping (DTW). The
benefits of DTW are to mitigate the difference in the
measuring time of the training and real-time sequences, the
ability to compare signal sequences of different lengths, and
most crucially is to eliminate the temporal variance in
walking speed (Miiller, 2007; Subbu et al., 2011). The
smaller the DTW measure is, the closer the two trajectories
are. The variant of DTW employed in this paper is called
open-end DTW (OE-DTW) (Giorgino, 2009). Normal DTW
will stretch the shorter sequence to match the longer one up
until the end, for which this OE-DTW version relaxes the
endpoint constraint. It serves the purpose of this paper
better, because in the early stage of the journey, the user’s
MFV sequence is short, and may introduce certain bias
when compared to the full training trajectories, even though
they start from the same position. In principle, OE-DTW
achieves its target by constructing different incomplete
versions of the longer sequence, and picks the best match. In
order to compare the DTW measure at different points of
the journey, these measures will be normalised by dividing
with the length of DTW aligned sequence. For the rest of
the paper, the term OE-DTW will be simply referred to as
DTW, and DTW measure means normalised OE-DTW
measure.

Figure 7 demonstrates an example of this estimation
process in real time. A video demonstrating this process can
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be viewed at http://www.cs.rhul.ac.uk/~wruf265/dtw.mp4.
The route prediction algorithm with the routine database is
summarised below (see Algorithm 1).

If the DTW measures between the real-time sequence
and all training trajectories are low, in other words, no
training trajectory matches the current sequence, the system
will simply make a single position-by-position prediction
with the fingerprinting database. This situation may happen
because the user is relatively new to the building, or because
his walking routines have not been well-recorded.

Algorithm 1: Estimating the trajectory with the routine
database

Data: Routine database with M training trajectories {7..,7,,| .

Result: Route prediction.
while user is still moving do

read Magnetic field vector MFV, at current

location £;
/* append it into the magnetic sequence
*/
(magcur = magC'MV + MFV;{ ) ;

/* Find the closest training trajectory

*/
min = oo;
T;‘gf = 71l 5

for i=2—>M do
if DTW (T,,mag,,, ) <min then

min = DTW (T,,mag,,, ) ;
T, =T;

re
end
end

return 7,

end

Figure 6 Acceleration reading with the phone in the trouser
pocket. When the device is static, the reading is around
9.8 m/s?, which is equivalent to the earth’s gravitational
force (Heiskanen and Meinesz, 1958) (see online
version for colours)
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Figure 7 An example of the dynamic route prediction with the Figure 7 An example of the dynamic route prediction with the
routine database. The three training trajectories were routine database. The three training trajectories were
Kitchen-bound, Lecture room-bound, and Toilet-bound. Kitchen-bound, Lecture room-bound, and Toilet-bound.
The matching number on the left is calculated by DTW The matching number on the left is calculated by DTW
and is scaled to [0, 1] for demonstration purpose andisscaled to [0, 1] for demonstration purpose (continued)
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(c) However, the user turns to a different route in midway. The
matching measure dropped as he navigates away from the
predicted route (kitchen)

(d) The system switches to the next matching route (lecture room)

4 Evaluation of performance

This section describes the real-world experiments of the
proposed technique. The R implementation of OE-DTW was
used to conduct the experiments (http://cran.r-project.org/web/
packages/dtw/ — last accessed in September 2016).

4.1 Test bed

Our office building has a 48.1 metres x 45.7 metres floor plan,
where the magnetometer data were collected (see Figure 8).
There are nine WiFi APs inside the building, and more than 30
APs in nearby buildings. The smartphone used to collect data
was the LG Nexus 5 (Quad-core 2.3 GHz). The PC server has
an Octa-core Intel i7 3.9 GHz CPU. The Android app we
designed can run silently in the phone’s background to collect
WiFi and magnetometer data (see Figure 9). It uses the
accelerometer to determine if the user is static, and
automatically slows down the scanning speed to prolong
battery power (see Table 1).

Table 1 Comparison of the battery and memory consumption of
our app and other popular apps. For one charging cycle,
our app ranks fourth on the least battery consumption
list, and second on the least memory consumption list

Application Power use (%) Mem. use (MB)

Skype 2 94

Hangouts (SMS) 4 65

Chrome 7 83

Our app 8 29

Gmail 14 94

WhatsApp 19 21

Google Maps 24 98
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Figure 8 The interiors of the test bed. All measurements were Figure 9 The client and server’s interface
carried out during daytime
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4.2 Criteria of evaluation for the routine database

Owing to the difficulties in recruiting more experts to generate
the routine database for many users, this paper only has one
routine database with 50 training trajectories, covering all three
corridors on the ground floor of the test bed, with the starting
and ending points in different offices (see Figure 10). In
particular, the longest trajectory has 62 MFV measures, and the
average length is 34. The magnetic field data were collected
with the phone held in the user’s hand at chest level, and the
impact of the device’s orientation is assumed to be negligible.

The test set contains 23 test trajectories measuring
separately at different times from the training set, for which ten
of them are fully covered in the training set (see Figure 11). For
every fully observed test trajectory, there are at least three
training trajectories that start from the same position.

The other ten test trajectories are partly covered so that
only the beginning portion of the route was recorded in the
training set. These routes either finished in unknown positions
or the remaining half of their trajectories was not observed
(see Figure 12).

The remaining three test routes are completely new
trajectories, which were recorded two floors above the training
space in the same building (see Figure 13). There is no
information of these routes in the training database.

Using this routine database, the paper aims to address
the following questions.

1 How well does the routine database predict the route
and the potential destination? The main purpose of the
routine database is to estimate the user’s trajectory and
destination. Therefore, it is natural to assess how well it
performs, in terms of how quickly the system picks the
correct trajectory and how often the system switches

trajectory during the journey.

Can the routine database improve the accuracy of the
single positioning prediction? If the routine database
identifies the correct route the user is taking, can it also
improve the positioning prediction, compared to the
result produced by the fingerprinting database?

For the experiments in this paper, the test trajectory is
broken down into ordered individual MFV which represents
a single position on the trajectory. Each MFV will be
accumulated one-by-one into a sequence to simulate a
walking user in real time. At each step, the system computes
the DTW measure of the current sequence to every training
trajectory. The training trajectory with the smallest measure
will be chosen as the predicted route.

Figure 10 Coverage of all training routes (see online version for colours)
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Figure 11 The ten fully observed test trajectories. The blue circle denotes the starting point (see online version for colours) (continued)
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Figure 11 The ten fully observed test trajectories. The blue circle denotes the starting point
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Figure 12 The ten partly observed test trajectories. The blue
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Figure 13 The three completely new test trajectories measured on a different floor. The blue circle denotes the starting point (see online

version for colours)
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4.3 The destination and route prediction evaluation

The first experiment evaluates the accuracy of the route and
the destination prediction. Two observations stand out from
this experiment. Firstly, in terms of destination prediction,
the accuracy was not particularly high. At all 317 positions
on the ten fully observed test trajectories, the system
managed to suggest the correct destination for only 156
positions, which was less than 50% (see Figure 14). This
result is understandable, because there are several training
trajectories that start from the same position for each test
trajectory. Thus, the system was not always able to pick the
training trajectory that leads to the correct destination.
Unsurprisingly, none of the remaining 13 partly observed
and new test trajectories suggested the correct destination.
However, in terms of route prediction, each position is
deemed correctly predicted as long as the predicted trajectory
overlaps with the correct trajectory from the beginning up until
the current position. For example, considering test trajectory
106-125, which goes from office 106 in the lower-left to office
125 in the top-right (see Figure 11 (b)), there are three training
trajectories that start from the same office with this test
trajectory but end in different positions (see Figure 15).

In this experiment, when the user’s sequence was short, the
system matched it to the shortest training route 106-115 (see
Figure 15 (a)). Although the user’s actual route was 106-125,
this taken route overlaps the predicted route 106-115. In other
words, the user was actually following the same trajectory up
until this point. In terms of positioning prediction, this
predicted route did not make much difference, which will be
evaluated in the next section. When the user’s magnetic
sequence grew larger as he went past room 115 — the
destination of the current predicted route, the system
recalculated the DTW measure and found the correct matching
route 106-125. Overall, at all 317 positions on the ten fully
observed test trajectories, the system managed to suggested the
correct trajectory for 286 positions, which was almost 90% (see
Figure 16). This result also illustrated that all the wrong route
predictions happened at early positions when the sequence was
short. For this routine database, all test positions with at least
nine MFVs found their correct routes.

The second experiment evaluates the value of the DTW
measure between the test trajectories and the training
trajectories. For all ten fully observed test trajectories, the
DTW measure at each position on the test trajectory was
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relatively low, with the highest measure recorded at just 12.6
(uT) (see Figure 17 (a)). This low measure is understandable
because there are several training trajectories that match these
fully observed test trajectories. For the ten partly observed test
trajectories, the DTW measures were also low, up until the
point where the user strayed away from all training trajectories,
from which the DTW measure quickly grew up (see Figure 17
(b)). For the three completely new test trajectories, the DTW
measures went up rapidly right from the very beginning with
the biggest measure recorded at 116.7 (uT), because there was
no training trajectories that match these new test trajectories
(see Figure 17 (c)). Table 2 summaries the DTW measures for
the three categories of the test trajectories.

This experiment also exposed how often the system
changed trajectory during the journey, since it always
picked the training trajectory with the lowest DTW measure
to the current sequence at each position. Figure 18 pointed
out that for this routine database, when the test trajectory
had less than ten MFVs, the system switched routes about
five times on average across all 23 test trajectories. In
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contrast, when the length of the test trajectory was within
[10, 20] MFV, the system switched route only two times on
average. For all ten fully observed test trajectories, there
were four routes being used on average throughout each test
trajectory. Overall, the longer the test trajectory was, the
more successful the system could match it to the correct
training trajectory, and the less frequent the system switches
routes.

Table 2 Comparison of the normalised DTW measure for the
test trajectories
Max DTW Min DTW  Average DTW
measure measure measure
Fully observed 12.6 3.2 6.8
test trajectories
Partly observed 84.7 33 31.2
test trajectories
Completely new 116.7 5.4 84.1

test trajectories

Figure 14 Destination prediction accuracy with the routine database. Each horizontal line corresponds to the test trajectory. Each cross
demonstrates a position along the journey where the destination prediction is correct
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Figure 15 The three training trajectories that start from office 106. The blue circle denotes the starting point (see online version for colours)
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Figure 15 The three training trajectories that start from office 106. The blue circle denotes the starting point (see online version for colours)
(continued)
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Figure 17 The minimum DTW measure at each position on the test trajectory throughout the journey (continued)
140

N
S
T

100

©
S

=23
S
T

S
o
T

[ )
(=3
T

—Route 357-347|
—Route 336-325|
—Route 336-348
| oute 336-349)

0 5 10 15 20 25 30
Timeline

Normalised DTW measure (¢ T)

(c) New test trajectories. The DTW measure increases rapidly from the very beginning

Figure 18 How often the system switches route, throughout the journey of the whole test trajectory
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Figure 18 How often the system switches route, throughout the journey of the whole test trajectory (continued)
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4.4 Single positioning estimation evaluation

Although the main purpose of the routine database is to
predict the potential walking trajectory and the destination,
it is interesting to investigate the positioning accuracy while
the user is travelling on the predicted route. At any stage of
the journey, the user’s position will be regarded as the
Cartesian label of the last position on the training trajectory
returned by DTW. It is worth recalling that the OE-DTW
variant of DTW employed in this paper tests different
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incomplete versions of the training trajectory by relaxing the
endpoint constraint to find the best matched version. For
this experiment, all 317 positions on the ten fully observed
test trajectories will be used as test positions. To compare
the positioning estimation with the fingerprinting database,
the WiFi RSS vector at each test position was used to
estimate the user position.

Figure 19 demonstrates a remarkable positioning accuracy
using the routine database with up to 2.2 metre positioning
error, 95% probability with the routine database, compared to
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3.5 metres, 95% probability with the fingerprinting database.
This result emphasises that when the system is certain
of the user’s walking trajectory, it can estimate the user’s
whereabouts using the individual positions recorded on the
training trajectories much quicker with higher accuracy. In
contrast, the fingerprinting approach must go through the
whole training database to make prediction for every position.
There are two reasons why the estimated position using
the routine database may not perfectly match the true
position. Firstly, the training trajectory does not line up
completely with the real-time trajectory. The version of the
training trajectory returned by DTW may be a few measures
before or after the real-time trajectory. Secondly, there are
many training trajectories starting in the same position, the
current predicted one is not necessarily the correct one.

Figure 19 Performance accuracy of single position estimation
with the routine database
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5 Related work

The earliest use of the magnetic field for indoor positioning
was first seen in robotics navigation. It helps the robot orientate
itself by maintaining a correlation to the magnetic North (Jung
et al., 2013; Suksakulchai et al., 2000). However, the structure
of most buildings greatly distorts the direction of the magnetic
field (i.e. compass does not work reliably indoors).

Some early work suggested the use of the magnetic field
with fingerprinting. However, they shared the same idea that
the position’s fingerprint is directly represented by the
magnetic data (Chung et al., 2011; Li et al., 2012; Kim et al.,
2012; Subbu et al., 2013; Haverinen and Kemppainen, 2009).
This approach is challenging, as explained earlier, since the
magnetic field only contributes a maximum of three measures
per location. The work described in this paper makes use of the
robust magnetic data via a sequence of measures.

Most earlier works in fingerprinting were considered in an
active tracking context, to provide the positioning service to the
user when requested (Bahl and Padmanabhan, 2000; Youssef
and Agrawala, 2005; Weber et al., 2010; Wang et al., 2015).
This paper provides an alternative approach to monitor the
user’s positions continuously in the background. The proposed
system predicts not only the user’s position, but also the
walking route the user may take in advance. This opens up new
possibilities for smart applications, which were not achievable
with only a single position.
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While the WiFi signal and the magnetic field data are
popular for fingerprinting, they have also been previously
applied in other fields, such as swarm intelligence, and
hardware security (Abraham et al., 2006; Bi et al., 2014;
Bi et al., 2015).

6 Summary and further work

Traditional fingerprinting has normally been considered as a
tracking service to guide the user to his wanted destination.
This paper considered fingerprinting as a sentient service
for the regular users to allow the system to predict their
intended walking route and the potential destination in
advance. The paper showed that such objective was possible
by using the magnetic field data to generate a routine
database for the user. The major difference of the proposed
approach and other fingerprint-based ones is that the real-
time readings are accumulated as a sequence to distinctively
represent the user’s walking trajectory. Using this routine
database, the system can predict the user position with
higher accuracy than using just the fingerprinting database.
The paper also demonstrated that the longer the system
observes the magnetic field data, the more accurate the
predicted routes are, and the less frequently the system
changes route during the journey.

The limitation of the proposed approach is that it is more
feasible for the buildings with narrow corridors (e.g. those
used in the test bed). It was not designed to identify the
user’s position in a large area (e.g. in the middle of the
lecture hall), for which the fingerprinting database will be
more suitable.

Lastly, some practical discussions are outlined here.
These discussions are not presented in the main body to
maintain the focus of the paper.

i How does the system cope when the user temporarily
turns off his phone, or when he takes a break during his
journey? When the walking route is broken, the system
simply makes a single position-by-position prediction
using the fingerprinting data set.

it What happens if the user turns on the tracking app in
the middle of his journey? With the current design, the
system predicts the trajectory at the beginning of the
user’s journey. It may be possible to make prediction
midway, although this concept has not yet been
examined in this paper.

iii  Why not use a universal routine database for every user
in a similar manner as the fingerprinting database?
Firstly, the paper assumes that most users often follow
their own preferred path to navigate the building.
Secondly, a universal database may contain too many
trajectories, for which certain paths may not be used at
all by some users.

We think this paper has laid the foundation for using the
routine database to predict the walking trajectory. Some
potential further works to improve this concept are outlined
below.
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i The personal routine database can be further personalised
by adding the approximate starting time for each journey.
Depending on the user’s timetable, he may favour one
particular route at a certain time, and this extra information
may improve the accuracy of the decision-making process.
More importantly, the timetable also tells how often the
event takes place, which can provide the initial value for
the frequency of the trajectory. For example, the timetable
indicates the user has four lectures per week, thus the
F(office, lecture) = 4.

ii It may also be useful to set a threshold for the user’s
real-time trajectory, so that the prediction engine only
engages when the trajectory reaches a certain length.
This approach has two benefits. Firstly, it guarantees
that the accumulated user trajectory is long enough to
avoid many initial similar matches with the training
trajectories. Secondly, it avoids the scenario where the
recording process is falsely triggered by the user who
temporarily picks up the phone to make a call.

iii  Since the routine database is constantly updated with
new WiFi RSS and magnetic field data, it is also a great
resource for crowdsourcing. The training examples
from the fingerprinting database may be updated with
the latest data extracted from the individual routes in
the routine database.

iv It may be beneficial to reduce the number of times the
system has to search through the routine database by
introducing a DTW measure threshold. There are two
scenarios for this threshold.

a) If the DTW measure between the current training
trajectory and the real-time trajectory is below the
threshold, the system believes that the user still
follows the predicted route. Hence, it does not
bother checking other training trajectories.

b) If the measure rises above the threshold, the system
believes that the predicted trajectory is no longer
correct. It recalculates the measure to other training
trajectories to find a better match.

There are two parameters to consider here. Firstly, a DTW
measure threshold needs to be decided in advance, so that
the system knows when to drop the current predicted
trajectory to find a better one. The challenges here are that if
this DTW measure threshold is too low, the system keeps
following the wrong training trajectory, although the user
has turned to a new route. In contrast, if this DTW threshold
is set too high, the system becomes too sensitive, and may
drop the correct training trajectory because of the noises
recorded in the real-time trajectory. Secondly, a time
window parameter also needs to be considered to tackle the
challenge with the magnetic noises. This time window
ascertains that the system does not accidentally drop the
correct training trajectory. Only when several low DTW
measures are recorded within this window, the current
training trajectory is dropped.
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