
Coreset-based Data Compression for Logistic
Regression

Nery Riquelme-Granada1, Khuong An Nguyen2, and Zhiyuan Luo1

1 Royal Holloway University of London, Surrey TW20 0EX, United Kingdom
2 University of Brighton, East Sussex BN2 4AT, United Kingdom

{Nery.RiquelmeGranada,Zhiyuan.Luo}@rhul.ac.uk
K.A.Nguyen@brighton.ac.uk

Abstract. The coreset paradigm is a fundamental tool for analysing
complex and large datasets. Although coresets are used as an acceler-
ation technique for many learning problems, the algorithms used for
constructing them may become computationally exhaustive in some set-
tings. We show that this can easily happen when computing coresets for
learning a logistic regression classifier. We overcome this issue with two
methods: Accelerating Clustering via Sampling (ACvS) and Regressed
Data Summarisation Framework (RDSF); the former is an acceleration
procedure based on a simple theoretical observation on using Uniform
Random Sampling for clustering problems, the latter is a coreset-based
data-summarising framework that builds on ACvS and extend it by using
a regression algorithm as part of the construction. We tested both pro-
cedures on five public datasets, and observed that computing the coreset
and learning from it, is 11 times faster than learning directly from the
full input data in the worst case, and 34 times faster in the best case.
We further observed that the best regression algorithm for creating sum-
maries of data using the RDSF framework is the Ordinary Least Squares
(OLS).

Keywords: Coresets · Data Compression · Logistic Regression.

1 Introduction

Data-compression techniques are a valuable set of tools for allowing learning al-
gorithms to scale with large datasets. These techniques deviate from the classic
algorithmic approach where one needs to write new algorithms in order to im-
prove the running time of the old ones. One then expects these newer versions
to converge faster. On the other hand, compression techniques allow the use of
the existing, potentially inefficient, algorithms on reduced versions of their input
data.

In a nutshell, given some input data D and a learning algorithm A, a typical
compression algorithm would attempt to reduce D to a much smaller, more
manageable, dataset S; once this compressed dataset has been obtained, the
original one can be discarded and A can be run on S as many times as necessary.

2 Nery Riquelme-Granada et al.

Since S is much smaller than D , the learning process is accelerated and hence
the computational burden associated with A can be better controlled.

Coresets (or core-sets) [10] are a representative framework of the data-com-
pression family of algorithms, a powerful data-compression paradigm that prov-
ably correctly approximates the input data D by constructing a small coreset
C, with |C| � |D|. Although there are other interesting compression techniques
such as Sketches [15] and Uniform Random Sampling (URS) [4], coresets are very
attractive since (i) as opposed to URS, they keep the learning loss bounded, and
(ii) as opposed to Sketches, coresets reside in input space i.e. the same space
where the input data lives. Furthermore, there are well-established approaches
for converting, with little effort, any batch algorithm to construct coresets into
an online one (See [6], Section 7).

This paper expands the line of work started in [17], where the algorithm for
constructing coresets for the problem of Logistic Regression (LR) was shown
to produce a bottleneck, which in turn caused undesirable extra computational
effort in the process of computing the coreset. Hence, some procedures were
necessary in order to guarantee the fast compression of the input data. Specifi-
cally, in this work we look in-depth at the Accelerating Clustering via Sampling
(ACvS) and Regressed Data Summarisation Framework (RDSF) ideas proposed
in [17]. The former is a straight-forward procedure that accelerates the compu-
tation of coresets for the problem of Logistic Regression without sacrificing any
performance; the latter, is a coreset-based framework that uses machine learning
to predict what the most important portion of the training set is, and constructs
a data compression using its predictions. Our contributions are summarised as
follows:

– We present and explain the ACvS procedure, proposed in [17], as a simple
and effective acceleration technique for reducing the computational over-
heads that constructing coresets may cause for the problem of Logistic Re-
gression.

– Following the work of [17], we re-visit the RDSF method as a coreset-based
compression technique that benefits from a regression algorithm to learn how
important the input points are with respect to the LR problem. We also
show how RDSF enjoys, following the same acceleration principles involved
in ACvS, a fast running time.

– We expand the empirical study presented in [17] in two major ways: (i)
we consider two new datasets, ijcnn1 and w8a, and show that ACvS and
RDSF efficiently produce good summaries of data; (ii) we present a new
set of experiments where different regressors are used as part of the RDSF
method. Specifically, we consider the Ordinary Least Squares (OLS), Ridge,
Lasso and Elastic Net regressors.

The rest of the paper is organised as follows. Section 2 provides the funda-
mental definitions and discussions on coresets. Section 3 presents an exposition
of the ideas originally proposed in [17]: ACvS and RDSF. Section 4 shows our
empirical evaluations and the results obtained by using both ideas. Finally, Sec-
tion 5 offers our conclusions and future work.

Coreset-based Data Compression for Logistic Regression 3

2 Coresets and Learning

In this section, we consider the problem of efficiently learning a binary LR classi-
fier over a small data summary obtained from the input data. To approach this,
we first introduce coresets and their construction. Then, we discuss the well-
known Logistic Regression classifier and the state-of-the-art coreset approach for
this particular learning problem called “Coreset Algorithm for Bayesian Logis-
tic Regression” (CABLR) [13]. Finally, we review the computational bottleneck
that seems inevitable when using the coreset construction algorithm CABLR for
LR.

2.1 Coresets and Their Construction

The framework of coresets is a well-established approach used to reduce both
the volume and dimensionality of large and complex datasets. A coreset is a
small set of points that approximates a much bigger set of points with respect
to a specific function. Formally, let function f be the objective function of some
learning problem and let D be the input data. The set C is said to be an ε-coreset
for D with respect to f if the following condition holds [10]:

|f(D)− f(C)| ≤ εf(D) (1)

where ε ∈ (0, 1) accounts for the error incurred for evaluating f over C 3. This
expression establishes the main error bound offered by coresets. Hence, we can
potentially suffer some loss when using the coreset; but this loss is bounded and
controlled via the ε error parameter. Notice that it is expected that |C| � |D|
holds.

The natural question to ask at this point is how to construct such a set C for
our input data so that we can enjoy the kind of guarantee in formula (1). There
are well-known techniques for constructing coresets and they can be summarised
as follows:

– geometric decomposition [2]: this is a fundamental approach for con-
structing coresets, because the first coreset constructions followed this line of
thinking; it relies on discretising the input space of points into cells or grids,
and then snapping representative points from each grid. This approach has
been extensively used in the analysis of shape fitting problems such as the
Minimum Enclosing Ball (MEB) [5].

– random sampling [9]: this is a more recent result and currently is one
of the most successful approaches for constructing coresets. The idea is to
compute a probability distribution that, in a well-defined sense, reflects the
importance of each input point with respect to function f . Then, one samples
the points following the importance distribution and assigns weights to each
sampled point. Thus, the coreset in this case is a weighted subset of the
original input data.

3 instead of using the full input data D

4 Nery Riquelme-Granada et al.

– gradient descent [16]: this line of work consists in using results from con-
vex optimisation to reduce the coreset construction process to an special case
of the popular gradient descent optimiser. Hence, the coreset is constructed
iteratively and often implicitly as part of the optimisation of the function f .

– projection-based methods [15]: the most notable projection-based method
is that of sketches: the idea is to perform projections to sub-spaces of the
input space in order to have lower-dimensional points. Hence, coresets con-
structed following this approach may have the same number of points as the
original input data, but because the coreset resides in a much lower dimension
i.e. the number of dimensions in the coreset is strictly less than the number
of dimensions in the original input data, learning-related computations are
faster. This set of techniques is largely inspired by the Johnson-Lindenstrauss
lemma [7], a result that states that the input data can be embedded in a
much lower-dimensional space such that the distances among the points are
approximately preserved.

No matter what approach we choose to construct the coreset C, we need a
precise definition of f . In machine learning, f is defined as the objective function
for the learning problem we are trying to solve. In our case, we want to compute
a coreset that allows us to learn a logistic regression classifier with small loss.
In the next section we formally define this fundamental learning problem; then,
we present a powerful method that falls into the random-sampling family of
algorithms to compute coresets.

2.2 Logistic Regression and Sensitivity Framework

Logistic Regression is a well-known statistical method for binary classification
problems. Given an input data D := {(xn, yn)}Nn=1, where xn is d-dimensional
feature vector and yn ∈ {−1, 1} is its corresponding label, the likelihood of
observing yn = 1 for xn and some parameters θ ∈ Rd+1 can be defined as
[plogistic(yn = 1|xn; θ) := 1/(1 + exp(−x′n · θ))], where θ ∈ Rd+1 and x′n ∈ Rd+1

which is xn with an additional column of 1.
Similarly, we have

plogistic(yn = −1|xn; θ) := 1− 1

(1 + exp(−x′n · θ))

=
exp(−x′n · θ)

(1 + exp(−x′n · θ))
=

1

(1 + exp(x′n · θ))
. (2)

Therefore, for any yn plogistic(yn|xn; θ) := 1/(1 + exp(−ynx′n · θ)).
Because the input data D is assumed to be independent and identically dis-

tributed, the log-likelihood function LLN (θ|D) can be defined as in [20]:

LLN (θ|D) :=

N∑
n=1

ln plogistic(yn|xn; θ) = −
N∑
n=1

ln(1 + exp(−ynxn · θ)) (3)

Coreset-based Data Compression for Logistic Regression 5

which is the objective function for the LR problem. The optimal parameter θ̂
can be obtained using maximum likelihood estimation. Maximising LLN (θ|D)

is equalivent to minimising LN (θ|D) :=
∑N
n=1 ln(1 + exp(−ynxn · θ)) over all

θ ∈ Rd+1. Finally, the optimisation problem can be defined as:

θ̂ := arg min
θ∈Rd+1

LN (θ|D), (4)

where θ̂ is the best solution found. Once we have solved Equation (4), we use

the estimated θ̂ to make prediction for any unseen data point.
A Bayesian approach to Logistic Regression allows us to specify a prior distri-

bution for the unknown parameter θ, p(θ) based on our real-life domain knowl-
edge and derive the posterior distribution p(θ|D) for a given data D by applying
Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

.

Exact Bayesian inference for Logistic Regression is intractable. Therefore, no
closed-form maximum likelihood solution can be found for determining θ and
approximation methods are typically used to find the solution.

The state-of-the-art coreset construction for LR problem, namely Coreset
Algorithm for Bayesian Logistic Regression (CABLR) was proposed by Huggins
et al. [13]. Designed for the Bayesian setting, this algorithm uses random sam-
pling for constructing coresets that approximate the log-likelihood function on
the input data D.

Huggins et al. followed a well-established framework know as the sensitiv-
ity framework [9] for constructing coresets for different instances of clustering
problems such as K-means and K-median. The main idea is to formulate coreset
construction as the problem of finding an ε-approximation [14], which can be
computed using non-uniform sampling based on the importance of each data
point, in some well-defined sense 4. Hence, each point in the input data is as-
signed an importance score, a.k.a. the sensitivity of the point. An approximation
to the optimal clustering of the input data is required in order to calculate such
importance scores. For each point, the sensitivity score is computed by taking
into account the distance between the point and its nearest (sub-optimal) cluster
centre obtained from the approximation. The next step is to sample M points
from the distribution defined by the sensitivity scores, where M is the size of the
coreset. Finally, each of the M points in the coreset is assigned a positive real-
valued weight which is the inverse of the point’s sensitivity score. The sensitivity
framework returns a coreset consisting of M weighted points. The theoretical
proofs and details can be found in [9].

However, careless use of this algorithm in the optimisation setting, as we
shall see in the next section, may be devastating as computing the clustering of

4 for our discussion, it is enough to state that the sensitivity score is a real value in
the half-open interval [0,∞)

6 Nery Riquelme-Granada et al.

the input data, even for the minimum number of iteration, can be too expensive.
The description of CABLR is shown in Algorithm 1 where k number of cluster
centres Q, from the input data are used to compute the sensitivities (lines 2-4
); then, sensitivities are normalised and points get sampled (line 5); finally, the
weights which are inverse proportional to the sensitivities, are computed for each
of the sampled points (lines 6-12). Thus, even though the obtained coreset is for
LR, CABLR still needs a clustering of the input data as it is common for any
coreset algorithms designed using the sensitivity framework.

Input: D: input data, QD: k-clustering of D with |QD| := k, M : coreset size
Output: ε-coreset C with |C| = M

1 initialise;
2 for n = 1, 2, ..., N do
3 mn ← Sensitivity(N,QD) ; // Compute the sensitivity of each

point

4 end

5 m̄N ← 1
N

∑N
n=1 mn ;

6 for n = 1, 2, ..., N do
7 pn = mn

Nm̄N
; // compute importance weight for each point

8 end

9 (K1,K2, ...,KN) ∼ Multi(M,(pn)Nn=1) ; // sample coreset points

10 for n = 1, 2, ..., N do
11 wn ← Kn

pnM
; // calculate the weight for each coreset point

12 end
13 C ← {(wn, xn, yn)|wn > 0};
14 return C

Algorithm 1: CABLR ([13]): an algorithm to construct coresets for Lo-
gistic Regression.

Remark 1. In the description of Algorithm 1, we hide the coreset dependence on
the error parameter ε, defined in Section 2.1. There is a good reason for doing
this. When theoretically designing a coreset algorithm for some fixed problem,
there are two error parameters involved: ε ∈ [0, 1], the “loss” incurred by coresets,
and δ ∈ (0, 1), the probability that the algorithm will fail to construct a coreset.
Then, it is necessary to define the minimum coreset size M in terms of these
error parameters. The norm is to prove there exists a function t : [0, 1]× (0, 1)→
Z+, with Z+ being the set of all positive integers, that gives the corresponding
coreset size for all possible error values i.e. t(ε1, δ1) := M1 implies that M1 is the
minimum number of points needed in the coreset for achieving, with probability
1− δ, the guarantee, defined in inequality (1), for ε1. However, in practice, one
does not worry about explicitly giving the error parameters as inputs; since each
coreset algorithm comes with its own definition of t, one only needs to give the
desired coreset size M and the error parameters can be computed using t. Finally,

Coreset-based Data Compression for Logistic Regression 7

t defines a fundamental trade-off for coresets: the smaller the error parameters,
the bigger the resulting coreset size i.e. smaller coresets may potentially lose
more information than bigger coresets.5

2.3 Challenges and Problems

Clustering on large input data is computationally hard [3]. This is why ap-
proximation and data reduction techniques are popular choices for accelerating
existing clustering algorithms. In fact, the paradigm of coresets has seen great
success in the task of approximating solutions for clustering problems (see [10],
[12], [4], [22] and [1]). The sensitivity framework, originally proposed for con-
structing coresets for clustering problems, requires a sub-optimal clustering of
the input data D in order to compute the sensitivity for each point in D. This
requirement transfers to CABLR, described in the previous section. If we assume
a Bayesian setting as in[13], the time necessary for clustering D is dominated by
the cost of the posterior inference algorithms (see [13]). However, if we remove
the burden of posterior inference and consider the optimisation setting, then the
situation is very different.

Figure 1 sheds some light on the time spent on finding a clustering compared
to all the other steps taken by CABLR to construct a coreset, namely: sensitiv-
ity computation and sampling. The time spent on learning from the coreset is
included as well.

Evidently, applying a clustering algorithm, even to get a sub-optimal so-
lution as done here, can be dangerously impractical for LR in the optimisation
setting, as it severely increases the overall coreset-construction time. Even worse,
constructing the coreset is slower than learning directly from D, defeating the
purpose of using the coreset as an acceleration technique.

Another interesting issue can be seen at display here: the algorithm used
for computing coresets must give us summaries of data that are both quickly-
computable and quality-preserving. Disregarding one of these objectives makes
our task much easier; that is, we can simply take an uniform random sampling
from our input data; no compression algorithm will finish faster, but we will
suffer a quality loss that is out of our control. Similarly, we can just avoid per-
forming any data compression/reduction at all, and we will for sure be able to
obtain a very high-quality solution; but we should be ready to deal with lots of
computational stress, storage overflows and even loss of random access6.

With coresets for LR, we propose the following research question: ‘Can we
still benefit from good coreset acceleration in the optimisation setting?’

5 For CABLR, Huggins et al. proved that t(ε, δ) := d cm̄N
ε2

[(D + 1)log m̄N + log(1
δ
)]e,

where D is the number of features in the input data, m̄N is the average sensitivity
of the input data and c is a constant. The mentioned trade-off can be appreciated
in the definition of t.

6 we loose random access when the input data is so large that accessing some parts of
the data is more expensive, computationally speaking, than accessing other parts.

8 Nery Riquelme-Granada et al.

We give an affirmative answer to this question through two approaches de-
scribed in the next section. The key ingredient for both methods is the use of
Uniform Random Sampling alongside coresets.

(a) Webspam (b) Covertype

Fig. 1: The bottleneck induced by the clustering process when constructing core-
sets, as presented in [17].

3 Two Accelerating Procedures

In this section, we propose two different procedures for efficiently computing
coresets for Logistic Regression in the optimisation setting. Both approaches are
similar in the following sense: they both make use of Uniform Random Sampling
(URS) for speeding up the coresets computation. URS is the most straightfor-
ward and simple way to reduce the size of input dataset by picking as many
points as permissible uniformly at random. This is not the first time that the
concept of URS comes up alongside coresets; in fact, URS can be seen as a naive
approach for computing coresets and it is the main motivation for deriving a
more sophisticated sampling approach [4]. In our procedures, however, we see
URS as a complement to coresets, not as an alternative to them, which is usually
the case in coresets works.

3.1 Accelerating Clustering via Sampling

Our first procedure, Accelerated Clustering via Sampling (ACvS), uses a straight-
forward application of URS. The procedure is described in Algorithm 2. First,
we extract b input points from D and put them into a new set S. We require that
b� N , where N := |D|. Then, we cluster S to obtain k cluster centres, namely
QS with |QS | := k. We finally run the CABLR algorithm using QS as input and
compute a coreset. Since we have that |S| � |D|, obtaining QS is substantially
faster than obtaining QD. Notice that the coreset algorithm CABLR is param-
eterised by the coreset size M . As a simple example, suppose we have a large

Coreset-based Data Compression for Logistic Regression 9

Input: CABLR: coreset algorithm, D: input data, A: a clustering algortithm,
k: number of cluster centres, b� |D|: uniform random sample size

Output: C: coreset
1 S ← ∅;
2 B ← |S|;
3 while B < b do
4 s← SamplePoint(D) // Sample without replacement

5 S ← S ∪ {s} // Put s in S

6 end
7 QS ← A(S,k) // Run Clustering algorithm on S
8 C ← CABLRM (D, QS) // Run Coreset Algorithm

9 return C
Algorithm 2: ACvS procedure, as defined in [17].

dataset that we would like to classify using logistic regression, and to do it quite
efficiently, we decide to compress the input data into a coreset. The standard
coreset algorithm for LR dictates that we have to find a clustering of our dataset
as the very first step. Then we use the clustering to compute the sensitivity of
each point. The next step is to sample points according to their sensitivity and
to put them in the coreset. Finally, we compute the weight for each point in
the coreset. What ACvS proposes is: instead of computing the clustering of our
dataset, compute the clustering of a very small set of uniform random samples
of it, then proceed as the standard coreset algorithm dictates.

We design this procedure based on the following observation: uniform ran-
dom sampling can provide unbiased estimation for many cost functions that are
additively decomposable into non-negative functions. We prove this fact below.

Let D be a set of points and let n := |D|; also, let Q be a query whose cost
value we are interested in computing. We can define a cost function which is
decomposable into non-negative functions as cost(D, Q) := 1

n

∑
x∈D fQ(x).

Most machine learning algorithms can be cast to this form. Here, we are
mainly concerned about k-means clustering, where Q is a set of k points and
fQ(x) := minq∈Q||x − q||22. Let us now take a random uniform sample S ⊂ D
with m := |S|, and define the cost of query Q with respect to S as cost(S,Q) :=
1
m

∑
x∈S fQ(x). To show that cost(S,Q) is an unbiased estimator of cost(D, Q)

we need to prove that E[cost(S,Q)] = cost(D, Q)

Claim. E[cost(S,Q)] = cost(D, Q)

Proof. By definition, we have that cost(S,Q) := 1
m

∑
x∈S fQ(x). Expanding this,

we get

E[cost(S,Q)] = E[
1

m

∑
x∈S

fQ(x)] (5)

The crucial step now is to compute the above expectation. To do this, it
is useful to construct the set S that contains all the possible subsets S in D.

10 Nery Riquelme-Granada et al.

The number of such subsets has to be
(
n
m

)
, which implies |S| :=

(
n
m

)
. Then,

computing the expectation over S and re-arranging some terms we get

1(
n
m

) 1

m

∑
S∈S

∑
x∈S

fQ(x) (6)

Next, we get rid of the double summation as follows: we count the number
of times that fQ(x) is computed. By disregarding overlapping computation of
fQ(x) due to the fact that a point x may belong to multiple subsets S ∈ S, we

quickly obtain that the count has to be
(
(n−1)
(m−1)

)
. Then, we write (6) as

1(
n
m

) 1

m

(
(n− 1)

(m− 1)

)∑
x∈D

fQ(x) (7)

Notice that now we have a summation that goes over our original set D.
Finally, by simplifying the factors on the left of the summation we have

1

n

∑
x∈D

fQ(x) = cost(D, Q) (8)

which concludes the proof.

The imminent research question here is: how does using the ACvS procedure
affect the performance of the resulting coreset? We shall show in Section 4 that
the answer is more benign than we originally thought.

3.2 Regressed Data Summarisation Framework

Our second method builds on the previous one and it gives us at least two
important benefits on top of the acceleration benefits given by ACvS:

– sensitivity interpretability: it unveils an existing (not-obvious) linear rela-
tionship between input points and their sensitivity scores.

– instant sensitivity-assignment capability: apart from giving us a coreset, it
gives as a trained regressor capable of assigning sensitivity scores instantly
to new unseen points.

Before presenting the method, however, it is useful to remember the follow-
ing: the CABLR algorithm (Algorithm 1) implements the sensitivity framework,
explained in Section 2.2, and hence it relies on computing the sensitivity (im-
portance) of each of the input points.

We call our second procedure Regressed Data Summarisation Framework
(RDSF). We can use this framework to (i) accelerate a sensitivity-based coreset
algorithm; (ii) unveil information on how data points relate to their sensitiv-
ity scores; (iii) obtain a regression model that can potentially assign sensitivity
scores to new data points.

The full procedure is shown in Algorithm 3: RDSF starts by using ACvS to
accelerate the clustering phase. The next step is to separate the the input data

Coreset-based Data Compression for Logistic Regression 11

Input: D: input data, A: clustering algortithm, k: number of cluster centres,
b� |D|: uniform random sample size, M : coreset size

Output: C̃: Summarised Version of D, φ: Trained Regressor
1 initialise;
2 S ← ∅;
3 B ← |S|;
4 N ← |D|;
5 while B < b do
6 s← SamplePoint(D) // Sample without replacement

7 S ← S ∪ {s} // Put s in S

8 end
9 QS ← A(S,k) // Run Clustering algorithm on S

10 R← D \ S;
11 Y ← ∅;
12 for n = 1, 2, ..., b do
13 mn ← Sensitivity(b,QS) // Compute the sensitivity of each point

s ∈ S
14 Y ← Y ∪ {mn};
15 end

16 Ŷ , φ← PredictSen(S, Y,R) // Train regressor on S and Y , predict

sensitivity for each r ∈ R
17 Y ← Y ∪ Ŷ ;
18 m̄N ← 1

N

∑
y∈Y y;

19 for n = 1, 2, ..., N do
20 pn = mn

Nm̄N
; // compute importance weight for each point

21 end

22 (K1,K2, ...,KN) ∼ Multi(M,(pn)Nn=1) ; // sample coreset points

23 for n = 1, 2, ..., N do
24 wn ← Kn

pnM
; // calculate the weight for each coreset point

25 end

26 C̃ ← {(wn, xn, yn)|wn > 0};
27 return C̃,φ

Algorithm 3: The Regressed Data Summarisation Framework ([17]) uses
a coreset construction to produce coreset-based summaries of data.

D in two sets: S, the small URS picked during ACvS, and R, all the points in D
that are not in S. The main step in RDSF starts at line 12: using the clustering
obtained in the ACvS phase, QS , we compute the sensitivity scores only for the
points in S and place them in a predefined set Y . A linear regression problem
is then solved using the points in S as feature vectors and their corresponding
sensitivity scores in Y as targets. This is how RDSF sees the problem of sum-
marising data as the problem of ‘learning’ the sensitivity of the input points.
The result of such learning process is a trained regressor φ and RDSF uses it to
predict the sensitivities of all the points in R. Hence, RDSF uses S as training
set and R as test set.

12 Nery Riquelme-Granada et al.

We finally see that after merging the computed and predicted sensitivities of
S and R (line 16 in Algorithm 3), respectively, RDSF executes the same steps
as CABLR i.e. compute the mean sensitivity (line 19), sample the points that
will be in the summary (line 22) and compute the weights (line 23).

4 Evaluations

In this section, we show our evaluation results. Similar to [17], [18] and [19], we
rigorously test coresets and coresets-based methods by applying a set of met-
rics which are standard in machine learning. This work hence puts considerable
emphasis on investigating coresets from an empirical standpoint, a perspective
that still remains largely unexplored in the coreset community.

4.1 Strategy

We tested our procedures on 5 datasets, shown in Table 1, which are publicly
available 7 and are well-known in the coreset community.

Table 1: Overview of the datasets considered for evaluation of our procedures.

Dataset Examples Features

ijcnn1 141,691 22

Webspam 350,000 254

Covertype 581,012 54

Higgs 11,000,000 28

w8a 64,700 300

All of our experiments are based on the following five procedures:

– Full: no coreset or summarisation technique is used. That is, we simply
train a LR model on the entire training set, then predict the labels for the
instances in the test set.

– CABLR: we obtain a clustering of the input data and run CABLR (Algo-
rithm 1) to obtain a coreset. We then train a LR model on the coreset to
predict the labels for the test instances.

– ACvS: we use the procedure ‘Accelerated Clustering via Sampling’, de-
scribed in Algorithm 2, to accelerate the coreset computation. Once we have
obtained the coreset in accelerated fashion, we proceed to learn a LR classi-
fier over it.

7 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/ - last accessed in 4/2021.

Coreset-based Data Compression for Logistic Regression 13

– RDSF: summaries of data are generated via the ‘Regressed Data Sum-
marisation Framework’, described in Algorithm 3. Hence, we compute the
sensitivity scores only for a handful of instances in the training set. Then,
we train a regressor to predict the sensitivity scores for the remaining of
the training instances. We sample points according to the sensitivities, com-
pute their weights, and return the data summary. We then proceed as in the
previous coreset-based procedures.

– URS: for the sake of completeness, we include ‘Uniform Random Sampling’
as a baseline for reducing the volume of input data; we simply pick the
required input points uniformly at random and then train a LR classifier
over them.

Our evaluation pipeline can be described as follows: for each of the above
approaches, and for each dataset in Table 1, we take the below steps:

a) data shuffling: we randomly mix up all the available data.

b) data splitting: we select 50% of the data as training set and leave the rest
for testing purposes. The training set is referred as the input data D.

c) data compressing: we proceed to compress the input data. As previously
mentioned, the CABLR approach computes a coreset without any accelera-
tion, ACvS computes a coreset by using CABLR with an accelerated clus-
tering phase, RDSF compresses the input data into a small data summary
in an accelerated fashion, and URS performs a naive compression by taking
uniform random samples of the input data. Full Data is the only approach
that does not perform any compression on the input data.

d) data training: we train a Logistic Regression classifier on the data obtained
in the previous step. CABLR, ACvS, RDSF and URS produce a reduced
version of the input data while Full Data trains the classifier on the full
input data D.

e) data assessing: we finally use the trained Logistic Regression classifiers to
predict the labels in the test set and apply our performance metrics, detailed
in Section 4.2.

We applied the above steps 10 times for each of the five different approaches.
Hence, the results we present in the next sections are averaged ones. Regarding
the hardware, our experiments were performed on a single desktop PC running
the Ubuntu-Linux operating system, equipped with an Intel(R) Xeon(R) CPU
E3-1225 v5 @ 3.30GHz processor and 32 Gigabytes of RAM.

For the coreset implementation, we adapted to our needs the CABLR algo-
rithm as shared by its authors 8. All of our programs were written in Python.
The method used for clustering the input data is the well-known K-means algo-
rithm; and for RDSF, we used linear regression to learn the sensitivities of input
points.

8 https://bitbucket.org/jhhuggins/lrcoresets/src/master - last accessed in 2/2020

14 Nery Riquelme-Granada et al.

4.2 Metrics

As previously mentioned, the empirical performance of coresets has mainly re-
mained a grey area in the past years. We apply the following performance metrics
in order to shed some light on, first, the performance of coresets in general, sec-
ond, the performance of our proposed methods. We consider the following five
performance metrics:

1. Computing time (in seconds): we measure acceleration in seconds. To
make a more meaningful analysis, we further break down time into 5 different
stages :
a) Clustering: the time needed to obtain the k-centres for coreset-based

approaches.
b) Sensitivity: the time required to compute the sensitivity score for each

input point.
c) Regression: the time needed for training a regressor in order to predict

the sensitivity scores for input points. The prediction time is also taken
into account.

d) Sampling: the time required to sample input points.
e) Training: the time required for leaning an LR classifier.
Notice that the Training phase is the only one present in all of our ap-
proaches. Hence, for example, the coreset approach does not learn any regres-
sor and thus it is assigned 0 second for that phase. The URS approach does
not perform any clustering or sensitivity computation, hence those phases
get 0 second for this method, etc.

2. Classification Accuracy: this measure is given by the percentage of cor-
rectly classified test examples. It is commonly used as the baseline metric
for measuring performance in a supervised-learning setting.

3. Area Under the Precision & Recall Curve (PREC/REC): Precision
is defined as TP

TP+FP and Recall can be computed as TP
TP+FN [8], where

TP ,FP and FN stand for the True Positives, False Positives and False
Negatives achieved by a binary classifier, respectively. The curve is obtained
by putting the Recall on the x-axis and the Precision on the y-axis. Once the
curve has been generated, the area under the curve can be calculated in the
interval between 0 and 1. The greater the area, the better the performance.

4. F1 Score: is the harmonic average of precision and recall [11] and hence
can be computed as F1 := 2 PR

R+P , where P is Precision and R is recall [11].
The greater the value, the better the classifier’s performance.

5. Area Under the ROC Curve (AUROC): provides an aggregate measure
of performance across all possible classification thresholds. The curve can be
computed by placing the False Positives Rate (FPR) on the x-axis and the
True Positives Rate (TPR) on the y-axis, with FPR := FP

FP+TN and TPR :=
TP

TP+FN ; here, once more, TP ,FP and FN stand for the True Positives, False
Positives and False Negatives achieved by any binary classifier, respectively.
Simillar to the area under the precision and recall curve, AUROC is obatined
from the curve.

Coreset-based Data Compression for Logistic Regression 15

4.3 Acceleration via ACvS and RDSF

We categorise our results according to the five different metrics we just described.
Notice that their values are shown as functions of the size of the summaries used
for training the LR classifier. Thus, if we look at Figures 3, 5, 4 and 6, we can
see that summary sizes on the x-axes correspond to very small percentages of
the training set. Specifically, for the Higgs dataset, which is the largest one, the
summary sizes are 0.005 %, 0.03 %, 0.06 % and 0.1 % of the input data. For
Webspam and Covertype, which are smaller then Higgs, we show results with
summary sizes of 0.05 %, 0.1 % , 0.3 %, 0.6 % and 1 % of the total input data.
Finally, for w8a and ijcnn1, which are the smaller datasets, the sizes shown are
1 %, 3 % , 6 %, and 10 %. The reason why there are different summary sizes for
some of our datasets has to do with the difference in size across datasets. For
example, computing a summary of 0.005 % of the w8a or the ijcnn1 datasets is
unfeasible since these datasets are not very large and hence it is very likely to
end up with a extremely small summary of data that only contains points of one
class. In other words: the larger the dataset, the more we can compress it.

Computing Time Figure 2 summarises our results in terms of computing time.
We show in the stacked-bars plots the time spent for each phase of the different
approaches.

We can clearly see that the CABLR approach, which clusters the full input
data in order to constructs coresets , is not suitable for the optimisation setting
we are considering. Specifically, with respect to the Full method, we notice that
for the Covertype dataset, the coreset approach gives a modest acceleration of
approximately 1.2 times. The situation becomes more severe for the Webspam,
ijcnn1, w8a and Higgs datasets, where using the traditional coreset approach
incurs in a learning process which is about 1.9, 2.6, 1.8 and 1.3 times slower
than not using coreset at all, respectively.

Hence, by removing the bottleneck produced by the clustering phase, our
two proposed methods show that we can still benefit from coreset acceleration
to solve our particular problem; that is, our methods take substantially shorter
computing time when compared to the CABLR approach. In particular, and
with respect to Full Data approach, our approach ACvS achieves a minimum
acceleration of 3.5 times (w8a) and a maximum acceleration of 34 times (Higgs)
across our datasets. Regarding RDSF, the minimum acceleration obtained was
1.15 times (w8a) and the maximum was 27 times (Covertype).

Notice that our accelerated methods are only beaten by the naive URS
method, which should most certainly be the fastest approach.

Finally, notice that the RDSF approach is slightly more expensive than
ACvS. This is the computing price we pay for obtaining more information i.e.
RDSF outputs a trained regressor that can immediately assign sensitivities to
new unseen data points; this can prove extremely useful in settings when learn-
ing should be done on the fly. According to our evaluations, RDSF’s time can
be improved by reducing the number of points used for training the underlying
regression algorithm. In general, using 1 % of the training set for training the

16 Nery Riquelme-Granada et al.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 2: Comparison of the computing time required by the different procedures.

Coreset-based Data Compression for Logistic Regression 17

regressor worked well; however, depending on the data, this could be reduced
(or increased) in order to achieve better computing time (learning quality).

The natural follow-up question is whether our methods’ resulting classifiers
perform well. We address this question in great detail in the following sections.

Accuracy We first look into the baseline metric for measuring the success
of a classifier: the accuracy. Figure 3 shows how the accuracy of the methods
changes as the sample sizes increase on different datasets. To recall, each of the
different methods considered relies on reducing the input data via a coreset-
based compression or a random uniform sample, as described in Section 4.1.
Hence, we here report the different accuracy scores obtained by training our LR
classifier on different samples sizes. As reference, we also include the accuracy
of the Full Data method as a straight line.

The first observation is that all the methods perform better as the sample
sizes increase. Quite surprisingly, we see that in all cases, without exceptions,
the ACvS approach achieves the exact same accuracy that the CABLR approach
achieves, for all sample sizes. Hence, for coresets, clustering over a sub-sample
of the input data does not seem to deteriorate the rate of correct predictions of
the resulting classifiers, and greatly accelerates the overall coreset computation,
as we could appreciate in the previous section.

We also see that the RDSF approach performs as good as the rest of the
coreset-based approaches, with accuracy never lower than the baseline approach
(URS). It is generally expected that coresets outperform the URS approach in
most situations; and RDSF summaries, even without being strictly a coreset 9,
show this behaviour.

Finally, we see that, as sample sizes increase, the gap between coreset per-
formance and URS performance reduces i.e. they both get closer and closer to
the Full Data approach. A particularly interesting case is that of w8a, which
shows a very similar performance for all the methods. This could be an indica-
tor that points in the dataset contribute almost equally to the learning problem
considered: LR, in this case.

F1 Score We now present the results of applying the F1 score metric to our
LR classifiers for different sample sizes, see Figure 4.

The first observation we make is that, similar to accuracy results, ACvS
and CABLR obtain exactly the same scores, and RDSF remains competitive
against them. Furthermore, it is fair to say that for the Covertype and Higgs
datasets, RDSF has preferable performance compared to the other compression
approaches. Hence, we once more see that the advantages of coresets are available
in our setting as long as we carefully accelerate the underlying algorithm.

Our experiments reveal that the performance gap between URS and the rest
of the approaches becomes even greater for the F1 Score; showing that classifiers

9 we carefully distinguish between a coreset and a coreset-based summary. The former
requires a theoretical proof on the quality loss.

18 Nery Riquelme-Granada et al.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 3: Comparison of the prediction accuracy achieved by the considered meth-
ods.

Coreset-based Data Compression for Logistic Regression 19

trained over coresets are more useful and informative than the ones trained over
uniformly randomly selected samples. Furthermore, if we look at F1 score for
ijcnn1 (see Figure 6a) we can have a glimpse of an interesting phenomenon: we
actually obtain better results using coresets, and hence less data, than using the
full dataset. We leave this as an open problem for future exploration.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 4: F1 scores obtained by each of the methods.

AUROC We now present the AUROC score for each of our 5 approaches.
Figure 5 shows comparison of the AUROC scores for all methods. The picture is
similar to that of F1-score and Accuracy: coreset-based approaches consistently
outperform URS. We see indeed that ACvS and RDSF perform competitively

20 Nery Riquelme-Granada et al.

traditional coreset approach, achieving their performance in substantially less
computing time than coresets (see Section 4.3). An intriguing case is that of
w8a, which shows that URS is actually slightly better than coreset approaches
for small sample sizes. As we previously mentioned, it is highly probably that
this is an indication that the input points in the dataset are not very different
in terms of their contribution to the LR objective function; or, it could also
be the case that the sensitivity distribution, as computed by the coreset-based
methods, does not fully account for the structure of the data.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 5: Comparison of the area under the ROC curve of different methods.

Coreset-based Data Compression for Logistic Regression 21

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 6: Comparison of the area under the precision/recall curve of different meth-
ods.

Precision & Recall Finally, we present the results concerning the precision and
recall score. The behaviour here is similar to that of AUROC. The performance
of w8a seems to be different from the rest of the data once more: we see that, for
very small sample sizes, URS is even slightly better that the coreset and coreset-
based approaches. As the sample sizes increase, the latter outperform the former,
although not by much. As we previously mentioned, this could mean that input
points in w8a are more or similar for LR and hence we cannot strictly distinguish
between redundant and important points. We also see that ACvS gets exactly
the same scores when compared to its non-accelerated version; which shows that

22 Nery Riquelme-Granada et al.

clustering over the whole input data is not necessary i.e. clustering over a small
uniform random sample is sufficient.

Summary of Results This section provides detailed performance information
of our procedures, alongside the rest of the methods, on the five datasets shown
in Table 1. Specifically, Tables 2, 3, 4, 5 and 6 show the different metric scores
obtained over the these 5 datasets, respectively.

Overall, and as shown in the plots in previous sub-sections, the empirical
results demonstrated that ACvS and RDSF do provide meaningful acceleration
to the traditional Coreset approach, while maintaining competitive performance,
in all datasets considered. One important observation is that, even though our
procedures give good speed-ups, the performance of coresets are dataset depen-
dent. If the structure of the data can be captured correctly by doing an uniform
random sample, then coreset performance should not be expected to be very
different than URS. We can see an example of this in w8a, where coresets in
general do not give very meaningful improvement. On the other hand, for the
rest of the datasets, we can indeed see how compressing the input data in more
involved fashion gives a significant improvement over the naive URS.

4.4 The RDSF Technique with Different Regressors

To finish our experiments exposition, we report the results obtained when using
RDSF with different regressors in a plug-in/plug-out fashion. More concretely,
we consider four different regression approaches: Ordinary Least Squares (OLS),
Ridge Regression (RR), Lasso Regression (LSR) and Elastic Net (EN). To re-
mind the reader, RR consists in fitting an OLS regressor with a L2 regulariser;
on the other hand, LSR trains an OLS regressor using a L1 regulariser. Finally,
EN finds an OLS regressor by using a convex combination of both L1 and L2 as
its the regularisation term.

Depending of what regression algorithm was used to predict the sensitivities
of input points, we can have one the following four RDSF instances:

– RDFS-OLS: an RDSF instance in which the input points’ sensitivity scores
were predicted using the ordinary-least-squares regression method. It is worth
mentioning that this is the RDSF instance used in [17] and in Section 4.3.

– RDFS-RR: an instance of RDSF where the sensitivity for input points was
predicted using the ridge regression method.

– RDFS-LSR: an RDSF instance that uses the lasso method for regression
for predicting sensitivity scores.

– RDFS-EN: an instance of RDSF in which the sensitivity scores for input
points are predicted via the elastic net regression method.

It is important to mention that for this study we only consider three metrics:
Precision & Recall, AUROC and F1 Score. The reason for this decision already
sheds the first lights on using different regressors for RDSF: different regressors
give summaries of data that, when used to solve the LR problem, give classifiers

Coreset-based Data Compression for Logistic Regression 23

Table 2: Performance comparison, as presented in [17], on the Covertype dataset.
Here, “size” is the percentage of training data used for coresets and coreset-based
summaries.

Size (%) Method F1 score ROC Accuracy Time (seconds)

0.05 Full 0.76 0.83 0.76 3.35

0.05 CABLR 0.69 0.75 0.69 2.78

0.05 ACvS 0.69 0.75 0.69 0.12

0.05 RDSF 0.70 0.76 0.69 0.12

0.05 URS 0.65 0.71 0.63 0.04

0.3 Full 0.76 0.83 0.76 3.31

0.3 CABLR 0.73 0.81 0.73 2.78

0.3 ACvS 0.73 0.81 0.73 0.13

0.3 RDSF 0.74 0.81 0.74 0.13

0.3 URS 0.68 0.77 0.69 0.05

1 Full 0.76 0.83 0.76 3.71

1 CABLR 0.75 0.82 0.75 3.38

1 ACvS 0.75 0.82 0.75 0.18

1 RDSF 0.75 0.82 0.75 0.18

1 URS 0.72 0.80 0.73 0.07

that do not meaningfully differ in their accuracy score. However, we will see
that when more involved performance metrics are considered, the difference in
performance becomes more meaningful.

We also highlight that the point of this set of experiments is not to find
out which of the RDSF instances considered is faster as the OLS method is by
definition the fastest regression algorithm of all, and ridge regression is known
to be faster than lasso. Instead, the aim of these experiments is to see whether
more involved regression algorithms can help us obtain RDSF summaries that
obtain better learning performance.

Figures 7, 8 and 9 show the performance obtained when compressing the
input data using different instances of the RDSF framework, specifically in terms
of the precision & recall, AUROC and F1 score, respectively. Notice that these
plots, as the ones found in the previous subsection, have the different sample sizes
of the (RDSF) summaries on the x axis and the corresponding performance value
on the y axis.

24 Nery Riquelme-Granada et al.

Table 3: Performance comparison, as presented in [17], on the Webspam dataset.
Here, “size” is the percentage of training data used for coresets and coreset-based
summaries.

Size (%) Method F1 score ROC Accuracy Time (seconds)

0.05 Full 0.92 0.94 0.97 5.39

0.05 CABLR 0.86 0.89 0.92 10.15

0.05 ACvS 0.86 0.89 0.92 0.31

0.05 RDSF 0.84 0.87 0.90 0.49

0.05 URS 0.70 0.79 0.88 0.05

0.3 Full 0.92 0.94 0.97 6.54

0.3 CABLR 0.90 0.92 0.96 13.40

0.3 ACvS 0.90 0.92 0.96 0.41

0.3 RDSF 0.89 0.91 0.95 0.64

0.3 URS 0.80 0.85 0.92 0.06

1 Full 0.92 0.94 0.97 6.35

1 CABLR 0.92 0.93 0.97 13.44

1 ACvS 0.92 0.93 0.97 0.45

1 RDSF 0.92 0.93 0.97 0.68

1 URS 0.88 0.90 0.95 0.08

Quite surprisingly, RDSF trained with the simple OLS method seems to
be the preferable approach for computing RDSF summaries in general: it is
not always the best. but more often than not it gets really close to the best
performing method. This is an enlightening result as OLS is the simplest method
of the ones considered, and is seems to provide a very good explanation of the
relationship between the input points and their sensitivities. Furthermore, we
can make the conclusion that regularisation does not help us much with the task
of predicting sensitivities. If we also add up the fact that OLS has a closed-form
solution and hence it is computationally very efficient, it becomes really hard to
justify the use of any of the other regression algorithms to compress input data
via the RDSF framework.

Finally, it is useful to mention that we also considered different sample sizes
for the regression problem of sensitivity prediction i.e. different values for the
parameter b in Algorithm 3; specifically, we tested setting b to 0.01%, 0.05%,
1%, 5%, 10% and 15% of the input data size; however, the behaviour observed
is very similar to the results presented here.

Coreset-based Data Compression for Logistic Regression 25

Table 4: Performance comparison on the Higgs dataset. Here, “size” is the per-
centage of training data used for coresets and coreset-based summaries.

Size (%) Method F1 score ROC Accuracy Time (seconds)

0.005 Full 0.68 0.69 0.64 89.22

0.005 CABLR 0.62 0.62 0.59 112.44

0.005 ACvS 0.62 0.62 0.59 2.61

0.005 RDSF 0.62 0.64 0.60 4.16

0.005 URS 0.58 0.56 0.54 1.12

0.03 Full 0.68 0.69 0.64 92.22

0.03 CABLR 0.67 0.68 0.633 121.25

0.03 ACvS 0.67 0.68 0.63 2.70

0.03 RDSF 0.67 0.67 0.63 4.46

0.03 URS 0.66 0.64 0.60 1.20

0.1 Full 0.68 0.69 0.64 90.18

0.1 CABLR 0.68 0.68 0.64 123.97

0.1 ACvS 0.68 0.68 0.64 2.61

0.1 RDSF 0.68 0.68 0.64 4.50

0.1 URS 0.69 0.67 0.62 1.29

5 Conclusion

As modern ever-growing sets of data overshadow our computing resources, scal-
ing up machine learning algorithm is not a trivial task. The most direct algorith-
mic approach is to write new learning algorithms that overcome the inefficiencies
of their old counterparts. A less direct approach consists of using the well-known
algorithms we currently possess over a reduced version of their input data. We
have presented the paradigm of coresets: a framework that correctly compresses
the input data with respect to an specific learning problem. We have shown
that for the optimisation setting, the algorithm for constructing coresets for the
problem of Logistic Regression relies on a clustering phase that, more often than
not, creates a bottleneck in the compression process.

To circumvent this, we proposed two methods that ease this computational
bottleneck: Accelerating Clustering via Sampling (ACvS) and Regressed Data
Summarisation Framework (RDSF). Both methods achieved substantial overall
learning acceleration while maintaining the performance accuracy of coresets.

26 Nery Riquelme-Granada et al.

Table 5: Performance comparison on the w8a dataset. Here, “size” is the per-
centage of training data used for coresets and coreset-based summaries.

Size (%) Method F1 score ROC Accuracy Time (seconds)

1 Full 0.543 0.965 0.98 0.06

1 Coreset 0.116 0.822 0.971 0.18

1 ACvS 0.116 0.822 0.971 0.02

1 RDSF 0.108 0.801 0.971 0.05

1 URS 0 0.826 0.97 0.007

3 Full 0.543 0.965 0.98 0.06

3 Coreset 0.305 0.869 0.973 0.19

3 ACvS 0.305 0.869 0.97321 0.02

3 RDSF 0.249 0.876 0.97237 0.06

3 URS 0 0.877 0.97 0.01

6 Full 0.543 0.965 0.98 0.05

6 Coreset 0.37 0.91 0.975 0.19

6 ACvS 0.37 0.91 0.975 0.02

6 RDSF 0.407 0.913 0.975 0.05

6 URS 0.0003 0.904 0.97 0.01

Coreset-based Data Compression for Logistic Regression 27

Table 6: Performance comparison, as presented in [17], on the ijcnn1 dataset.
Here, “size” is the percentage of training data used for coresets and coreset-based
summaries.

Size (%) Method F1 score ROC Accuracy Time (seconds)

1 Full 0.46836 0.93313 0.92462 0.18

1 Coreset 0.47105 0.89755 0.92229 0.49

1 ACvS 0.47105 0.89755 0.92229 0.03

1 RCP 0.49022 0.90092 0.92261 0.03

1 URS 0.00123 0.81114 0.90412 0.01

3 Full 0.46836 0.93313 0.92462 0.19

3 Coreset 0.47487 0.92229 0.92391 0.45

3 ACvS 0.47487 0.92229 0.92391 0.04

3 RCP 0.44788 0.92085 0.92305 0.03

3 URS 0.08715 0.89298 0.90677 0.02

6 Full 0.46836 0.93313 0.92462 0.19

6 Coreset 0.47861 0.92658 0.92456 0.46

6 ACvS 0.47861 0.92658 0.92456 0.04

6 RCP 0.47063 0.92630 0.92477 0.04

6 URS 0.25508 0.91849 0.91363 0.02

28 Nery Riquelme-Granada et al.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 7: Comparison of the areas under the precision & recall curve obtained from
LR classifiers learned over RDSF summaries. The summaries were computed
using different underlying regressors.

This implies that coresets can still be efficiently used to learn a logistic regression
classifier in the optimisation setting.

Interestingly, we observed that, even though CABLR involves input data
clustering, this can be relaxed in the practical sense. Furthermore, our calcula-
tions indicate that CABLR must be used with the clustering done over a small
subset of the input data in the optimisation setting (i.e. the ACvS approach).
Our empirical evaluations confirm that, by doing so, one will not be sacrificing
learning performance.

With respect to RDSF, we believe this will open a new research branch for
coresets: we could pose the computation of data compression via coresets as
solving a small-scale learning problem in order to solve a large-scale one. It is

Coreset-based Data Compression for Logistic Regression 29

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 8: Comparison of the AUROC obtained from LR classifiers learned over
RDSF summaries. The summaries were computed using different underlying
regressors.

30 Nery Riquelme-Granada et al.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Fig. 9: Comparison of the F1 scores obtained from LR classifiers learned over
RDSF summaries. The summaries were computed using different underlying
regressors.

Coreset-based Data Compression for Logistic Regression 31

interesting to see that the sensitivities of input points can be explained by a
simple linear regressor. Most importantly, we believe that this method could be
of powerful use in the online learning setting [21]. This is because RDSF allows
us to obtain a fully trained regressor capable of assigning sensitivity scores to
new incoming data points. We leave the use of these methods in different machine
learning tasks as future work.

Acknowledgements

This research is supported by AstraZeneca and the Paraguayan Government.

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: Streamkm++: A cluste ing algorithm for data streams. Journal of Experimental
Algorithmics (JEA) 17, 2–4 (2012)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. Combinatorial and computational geometry 52, 1–30 (2005)

3. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms. pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

4. Bachem, O., Lucic, M., Krause, A.: Practical coreset constructions for machine
learning. arXiv preprint arXiv:1703.06476 (2017)

5. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry
40(1), 14–22 (2008)

6. Braverman, V., Feldman, D., Lang, H.: New frameworks for offline
and streaming coreset constructions. CoRR abs/1612.00889 (2016),
http://arxiv.org/abs/1612.00889

7. Dasgupta, S., Gupta, A.: An elementary proof of the johnson-lindenstrauss lemma.
International Computer Science Institute, Technical Report 22(1), 1–5 (1999)

8. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd international conference on Machine learning. pp. 233–
240 (2006)

9. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the forty-third annual ACM symposium on Theory of
computing. pp. 569–578. ACM (2011)

10. Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-
size coresets for k-means, pca and projective clustering. In: Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms. pp. 1434–
1453. SIAM (2013)

11. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-
score, with implication for evaluation. In: European Conference on Information
Retrieval. pp. 345–359. Springer (2005)

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
pp. 291–300. ACM (2004)

32 Nery Riquelme-Granada et al.

13. Huggins, J., Campbell, T., Broderick, T.: Coresets for scalable bayesian logistic
regression. In: Advances in Neural Information Processing Systems. pp. 4080–4088
(2016)

14. Mustafa, N.H., Varadarajan, K.R.: Epsilon-approximations and epsilon-nets. arXiv
preprint arXiv:1702.03676 (2017)

15. Phillips, J.M.: Coresets and sketches. arXiv preprint arXiv:1601.00617 (2016)
16. Reddi, S.J., Póczos, B., Smola, A.J.: Communication efficient coresets for empirical

loss minimization. In: UAI. pp. 752–761 (2015)
17. Riquelme-Granada, N., Nguyen., K.A., Luo., Z.: On generating efficient data

summaries for logistic regression: A coreset-based approach. In: Proceed-
ings of the 9th International Conference on Data Science, Technology and
Applications - Volume 1: DATA,. pp. 78–89. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009823200780089

18. Riquelme-Granada, N., Nguyen, K., Luo, Z.: Coreset-based conformal prediction
for large-scale learning. In: Conformal and Probabilistic Prediction and Applica-
tions. pp. 142–162 (2019)

19. Riquelme-Granada, N., Nguyen, K.A., Luo, Z.: Fast probabilistic prediction for
kernel svm via enclosing balls. In: Conformal and Probabilistic Prediction and
Applications. pp. 189–208. PMLR (2020)

20. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge university press (2014)

21. Shalev-Shwartz, S., et al.: Online learning and online convex optimization. Foun-
dations and Trends in Machine Learning 4(2), 107–194 (2012)

22. Zhang, Y., Tangwongsan, K., Tirthapura, S.: Streaming k-means clustering with
fast queries. In: Data Engineering (ICDE), 2017 IEEE 33rd International Confer-
ence on. pp. 449–460. IEEE (2017)

