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Epidemic contact tracing with smartphone sensors
Khuong An Nguyen a, Zhiyuan Luob and Chris Watkinsb

aSchool of Computing, Engineering & Mathematics, University of Brighton, Brighton, UK; 
bComputer Science Department, Royal Holloway University of London, Egham, UK

ABSTRACT
Contact tracing is widely considered as an effective proce
dure in the fight against epidemic diseases. However, one of 
the challenges for technology based contact tracing is the 
high number of false positives, questioning its trust- 
worthiness and efficiency amongst the wider population for 
mass adoption. To this end, this paper proposes a novel, yet 
practical smartphone-based contact tracing approach, 
employing WiFi and acoustic sound for relative distance 
estimate, in addition to the air pressure and the magnetic 
field for ambient environment matching. We present a model 
combining six smartphone sensors, prioritising some of them 
when certain conditions are met. We empirically verified our 
approach in various realistic environments to demonstrate 
an achievement of up to 95% fewer false positives, and 62% 
more accurate than Bluetooth-only system. To the best of our 
knowledge, this paper was one of the first work to propose 
a combination of smartphone sensors for contact tracing.
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1. Introduction

During any viral outbreak, people who have been in close contact with 
a contagious victim, are at risk of being infected themselves. Therefore, being 
able to detect such ‘contacts’ early, correctly, and effectively, is critical to 
manage and suppress the disease. In the past outbreaks (e.g. SARS, Ebola, 
Swine flu, etc.), contact tracing has proven to be one of the most vital instru
ments for public health experts. However, as modern viruses (e.g. Covid-19) 
have evolved to become far deadlier and more infectious, conventional contact 
tracing approaches are urgently in need to be revamped by modern 
technology.

In the past decade, the continual proliferation of smartphones has changed 
the consumers’ behaviour. Globally, more than 3.5 billion people own 
a smartphone, and in the United Kingdom alone, more than 94% of adults 
have one.1 The smartphone may now be considered as an indispensable neces
sity to serve most people’s daily routines, from essential communications (e.g. 
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family and friend chatting, email and text messaging), to information seeking 
(e.g. news reading, web surfing, route navigation), to entertainment purposes 
(e.g. music listening, photo taking, game playing), to health management (e.g. 
fitness tracking). Coupling with the fact that smartphones are powerful mini- 
computers equipped with a variety of sensors, this may well be the leverage for 
technology based contact tracing that we have been searching for.

Recently, Bluetooth Low Energy (BLE) technology has been viewed as the 
future prospect for automated contact tracing, thanks to its low power con
sumption and its relatively short communicating distance. However, from the 
application viewpoint, BLE bears two major issues, which were revealed by 
recording the raw BLE received signal strength (RSS) between two smartphones 
at fixed positions, with increasing distance away from each other in a straight 
line (see Figure 1). Visibility wise, two smartphones may still be reached at up to 
20 metres indoors and 30 metres outdoors, because of the wireless signal multi- 
path. Distance wise, it is challenging to determine when two smartphones are 2 
metres or 6 metres apart, based on the BLE RSS which varies strongly (much 
more indoors) because of its frequency hopping technique (to be discussed in 
Section 4.4.1).

To this end, this paper proposes a contact tracing system based on non- 
location non-intrusive smartphones sensors (no GPS or Cellular). Our approach 
combines 6 such sensors (i.e. barometer, Bluetooth, magnetometer, micro
phone, proximity, and WiFi), in one uniform model to detect the contacts of 

Figure 1. The two problems of BLE based contact tracing system. Firstly, two smartphones may 
still be visible at 30 metres apart outdoors. Secondly, it is hard to tell the difference between 2 
to 6 metres as the RSS standard deviation (demonstrated by the shading areas) is noticeably 
high. This experiment was performed by measuring the BLE RSS between two phones at pre- 
determined fixed positions with increasing distance away from each other in a straight line.
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nearby phones. We present extensive empirical experiments to assess the 
feasibility and performance of such system.

1.1. The contributions of this paper

Overall, the paper makes the following novel contributions.

● We propose a new concept of multi-smartphone-sensor system for contact 
tracing.

● We assess the feasibility of individual sensor with respect to contact 
tracing.

● We analyse the performance of the proposed system in three real-world 
testbeds.

To the best of our knowledge, this paper was one of the first work to propose 
a combination of smartphone sensors for contact tracing, and the first one to 
assess the feasibility and the performance of such approach.

The remaining of the paper is organised into six sections. Section 2 overviews 
other related work. Section 3 explains the concept of contact tracing, and its 
significance. So that, Section 4 will build on, to introduce the idea of contact 
tracing with multiple smartphone sensors. Then, Section 5 details the empirical 
experiments. Finally, Section 6 concludes our work and outlines future research.

2. Related work

As our work is dedicated to co-location smartphone-based contact tracing 
system, which does not involve any type of location database, we will mainly 
concentrate on similar approaches in the literature. At the end of the section, 
Table 1 will briefly summarise these existing works.

BLE based contact tracing is perhaps the most popular approach, which was 
first proposed by the Flu-Phone project (Yoneki 2011) (note that they also mixed 
in GPS coordination data). Due to the Covid-19 pandemic, several independent 
BLE solutions were implemented around the world, often contracted by 
national agencies (see the MIT list of Covid tracker apps by nations).2 One of 
the very first was BlueTrace by the Singaporean government, which senses 
nearby smartphones via BLE scanning and approximates the distance between 
them via the BLE RSS (Bay et al. 2020), which was also the standard blueprint for 
most BLE-based apps. Most recently, Google and Apple joined force to create 
the Google/Apple Exposure Notification (GAEN) API,3 aiming to streamline the 
BLE background scanning and recording process, as well as addressing the user 
privacy concern for contact tracing apps, set by the Decentralised Privacy- 
Preserving Proximity Tracing (DP-3 T) protocol (Hubaux 2020). Unfortunately, 
it is currently only available for government agencies to adopt, and there have 
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been some concerns of its effectiveness due to sporadic scanning interval and 
over-simplified BLE scanning report (Dehaye and Reardon 2020; Leith and 
Farrell 2020).

Camera based solution, which is arguably intrusive due to its mechanism of 
recording of the user’s physical appearance (e.g. facial information), has also 
been proposed in the literature, although very few made it to real-world contact 
tracing. Some notable examples included the government approaches in India, 
South Korea, and China (Preethika et al. 2020; Seetharaman 2020; Tabari et al. 
2020; Vaughan 2020).

GPS based solution, which records the user’s precise position in latitude and 
longitude, has also been attempted, with the most recent work by Raskar et al. 
(Raskar et al. 2020), Wang et al. (Wang, Ding, and Xiong 2020), and the HaMagen 
app by the Israeli government4 (Sönmez and Elik 2020), which build the GPS 
location trails of the registered users. Having access to this type of detailed 
location coordination would make contact tracing much easier and more accu
rate, should the privacy concern be properly addressed.

Magnetometer based approach was proposed in our previous work to track 
passengers on the public transports (Nguyen, Watkins, and Luo 2017). The two 
vital observations of this work were that the electric currents powering the rail 
lines would alter the on-board magnetic field in such a way that people in 
different carriages experience various non-deterministic measures; and the fact 
that passengers must share the same journey between at least two consecutive 
stations. Similar works utilising the magnetic field to detect colocation of the 
users were reported in other environments, especially indoors with a high 
degree of magnetic anomalies due to the building infrastructure (Jeong, Kuk, 
and Kim 2019; Nguyen et al. 2019a).

WiFi based solution, which features dominantly in the indoor positioning 
research, has become more attractive for epidemic tracking, thanks to the 

Table 1. Overview of existing smartphone-based contact tracing approaches. Most of them are 
single technology based.

Sensor 
employed

References Note

BLE (Bay et al. 2020, Dehaye and Reardon 
2020, Leith and Farrell 2020, Yoneki 
2011)

This is the most popular approach for contact tracing 
right now. It employs BLE scanning for visibility 
discovery, and the signal strength to estimate the 
relative distance between devices.

Camera (Preethika et al. 2020, Seetharaman 
2020, Tabari et al. 2020, Vaughan 
2020)

Employing machine learning techniques such as facial 
recognition to track civilians.

GPS (Raskar et al. 2020, Sönmez and Elik 
2020, Wang, Ding, and Xiong 2020)

Cross-checking the location trails of registered users to 
discover contacts.

Magnetism (Jeong, Kuk, and Kim 2019, Nguyen et al. 
2019a, Nguyen, Watkins, and Luo 
2017)

Relying on the magnetic anomalies caused by ferrous 
metals in most building infrastructure to record the 
users’ magnetic fingerprints.

WiFi (Carlotto et al. 2008, Krumm and 
Hinckley 2004, Nguyen, Luo, and 
Watkins 2015)

Utilising the public WiFi APs to detect contacts, where 
two co-located smartphones share the same set of 
APs at a particular moment.
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increasing number of indoor and outdoor public WiFi Access Points (APs). Our 
previous work demonstrated that contact detection using pure WiFi RSS could 
closely match the accuracy of GPS (used as a reference) in the city centre, when 
at least 10 WiFi APs were around (Nguyen, Luo, and Watkins 2015). Similar 
earlier works focused on the indoor WiFi APs to identify the proximity of the 
users and the devices (Carlotto et al. 2008; Krumm and Hinckley 2004).

3. What is contact tracing, and why is it essential ?

This section introduces the core idea behind contact tracing and its roles in 
fighting epidemic diseases.

3.1. What is contact tracing ?

In essence, contact tracing in an epidemic is the process of identifying all 
potential victims, who have been in ‘close’ contact with an infected person, 
and iteratively tracing the victims’ subsequent contacts in turn.

However, being in close proximity with a contagious individual does not 
strictly guarantee in getting the virus, as there are other factors such as the 
person’s health condition, the protective equipment (e.g. facial mask) being 
used, the duration of exposure, the viral load, and many more. The overall 
hypothesis, adopted by the World Health Organisation (WHO), is that 
a ‘contact’ is registered when two persons, one of whom is positively tested 
for Covid-19, are within 1 metre of each other, for at least 15 minutes.5

3.2. Why we need contact tracing ?

Most viral infection diseases (e.g. Covid-19, SARS, Swine-flu etc.) share the 
common trait of being contagious during the incubation period (i.e. the time 
elapsed between being exposed to the virus, and when the first symptoms are 
shown) which may last for weeks without any apparent signs, during which the 
infectious patients unknowingly spread the virus to other victims (Jiang, Rayner, 
and Luo 2020; Leung 2020). Therefore, it is essential to pro-actively quarantine 
all potential patients who have been in prolonged contact with the confirmed 
virus host.

Contact tracing plays three critical roles in the fight against an epidemic. The 
first role is early treatment, that is, helping exposed patients to seek timely 
medical advices, hence boosting successful recovery chance. The second role is 
transmission control, that is, informing potential victims to self-isolate, hence 
stopping the chain of onward transmission. The third role is epidemiology 
study, that is, gaining more insights (e.g. infectious origins, region, route, 
gender, etc.) of the epidemic, enabling a better strategy to fight the disease in 
the long term.
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3.3. Three forms of contact tracing

Conventionally, there are three mainstream forms of contact tracing.

● Interviews are perhaps the oldest, but are still widely used in present days, 
where sick patients are requested to recall as many past contacts as they 
can (Swanson et al. 2018). Such interviews may be completed in person, via 
a form in the post, or on the internet. Nevertheless, human memory may 
prove too imprecise for such critical task, not to mention that such inter
views are time consuming and struggle to reach the wider population.

● Narrowcasting aims at a small-scale, concentrated part of the population 
(e.g. a town, a building), where the health authorities broadcast an announce
ment (e.g. on local radio, newspapers, bulletin boards, etc.) asking past 
visitors to carry out viral tests, and informing others to avoid such areas 
(Kaligotla, Yücesan, and Chick 2016). This approach allows the officials to 
quickly control an epidemic hotspot. However, since narrowcasting was 
meant for targeting a concentrated demographic region, it struggles to stay 
effective when the epidemic spreads across different regions at large scale.

● Real-time detection addresses the issues of both approaches above, by 
recording the disease contact between citizens and managing the epidemic’s 
progress at it happens. Such detection has mostly been attempted via ambient 
technology such as facial recognition (via Camera CCTV (Hou et al. 2017; Wang 
et al. 2017)), signal tracking (via the phone’s cellular signal (Aziz et al. 2016)) and 
location monitoring (via GPS data (Chaix 2018; Olu et al. 2016; Stanley and 
Granick 2020)). The common deterrent for all of these technologies is being 
intrusive, which may lead to the reluctance to comply and adopt by the 
citizens.

In the next section, we will introduce our approach using smartphone sensors 
that improves on the above real-time detection approach.

4. Contact tracing with smartphones sensors

Having instigated the general concept of contact tracing, we may now introduce 
our approach in smartphone sensors-based contact tracing. In doing so, we will 
outline the idea, process, assumptions, and challenge facing our approach.

4.1. The smartphone-based contact tracing model

In principle, our approach fits in the ‘real-time detection’ category, as detailed 
above. The complete process involves three steps (see Figure 2).
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● Registration. All participants download and start the app on their smart
phones. It will register with the central server, then generate a unique, 
temporary ID representing the phone, which will be constantly refreshed 
after some period of time. The rationale for not using a permanent ID is to 
make it challenging for snoopers to identify the participants.

● Contact detection. The app detects nearby phones running the same app, 
and records such contacts locally on the phone. Both phones will exchange 
their temporary, current IDs. Although not being the main focus of this 
paper, the scanning interval should be configured to happen not too 
frequently (e.g. at 30 seconds or 1 minute interval) to reduce the power 
consumption and to avoid flooding the BLE and WiFi channels. The ratio
nale for maintaining the contact list locally on each phone, and not 
centrally on a server is to avoid constant data transmission, preventing 
potential future data breach, and allowing the non-infectious participants 
to remain anonymous.

● Infection report. There are two models for infection report, namely the 
centralised model, and the decentralised model.

Figure 2. The general steps of our proposed smartphone-based contact tracing procedure.
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In the centralised model, when a participant is diagnosed positive, his/her 
app reports the news to a central server, and releasing the locally stored contact 
list so far. It is clear that such infectious patients must reveal their identity to the 
server at this stage. The server subsequently informs all contacts from the 
infected user’s list. This model is pioneered by the Pan-European Privacy- 
Preserving Proximity Tracing (PEPP-PT) group,6 which promotes standardised 
approaches (e.g. ROBust and privacy – presERving proximity Tracing protocol – 
ROBERT (Castelluccia et al. 2020)) for strong European data privacy in accessing 
the user smartphone data. Its early adopters included the German and Italian 
governments (Analytica 2020).

In the decentralised model, the diagnosed participant reports only his/her 
positive status to the server. S/he still needs to reveal the identity at this point. 
The server then updates the anonymised public list of infected users, which all 
participants should frequently check to verify their own status. This model is 
championed by Google and Apple (i.e. the Google/Apple Exposure Notification 
(GAEN) API7), and the Decentralised Privacy-Preserving Proximity Tracing (DP-3T) 
initiative (Hubaux 2020).

The benefit of the centralised setting is that the server’s owner (e.g. govern
ment or health entities) may have a good overview picture of the epidemic’s 
state, and all infected users may remain anonymous amongst other users (except 
to the server, and in the rare event of a participant being in contact with just 
a single user, who is later diagnosed positive). In the opposite, the benefit of the 
decentralised setting is that an infected user needs not expose his/her entire 
contact list to the server, giving the participants more control of their own data.

It is worth noting that we will focus mostly on detecting a contact between 
two nearby smartphones (i.e. Step 2 in Figure 2). As such, other important 
properties such as secured protocol to exchange information, third-party 
trusted server, user privacy, etc. are beyond the scope of this paper.

4.2. Our assumptions

In order for smartphones based contact tracing to be effective and reliable, the 
following assumptions are made:

● Substantial number of participants. In common with any other technol
ogies, the success of this approach relies first and foremost to the will
ingness of the wider population to engage. The first pre-requisite is most 
citizens download the app to their smartphones. This assumption could be 
satisfied as many countries start to raise their citizen’s awareness of the 
disease’s seriousness. It may soon be the pre-condition to relax lock-downs 
and allow people to better protect themselves.

● Carrying smartphones. As this approach registers the human contact via 
the smartphones, it is vital that the devices are present along with the 
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users when such contact happens. This assumption is mostly satisfied as 
most (if not all) smartphone owners carry it with them whenever they are 
outdoors.

● Accurate feedback. When a user is confirmed positive, s/he must inform 
the app. Subsequently, ordinary users must not falsify such result. This 
assumption could be satisfied by official confirmation from the medical 
test results.

It goes without saying that the above assumptions would be made easier, 
should the proposed technology be shown to be effective with few false 
positives, and thus gaining trust amongst the users, in which this paper aims 
to address.

4.3. Detecting a contact between two smartphones

Correctly detecting a contact between two nearby smartphones is the key 
mechanism for this approach. We emphasise that the contact is detected in 
the proximity based relative position (i.e. whether the phones are close or not?), 
and not the absolute coordination of the phones, which may be too sensitive to 
privacy issues. The detection happens in real time, and only a binary (yes/no) 
decision, along with the nearby phones’ temporary ID (as explained in Section 
4.1) are recorded locally on the phone.

There are two approaches to register such contacts with smartphone sensors 
(see Figure 3).

● Shared environment comparison. When two phones are nearby, their 
respective sensor measures of the current environment should be similar.

● Appearance sensing. Some sensors have the ability to tell the existence of 
the same sensor type in other nearby phones.

4.4. Assessing the feasibility of employing smartphone sensors

Currently, there are about 14 sensors in modern smartphones, with different 
functionalities. Table 2 compares some of their well-documented properties 
which are useful for contact tracing, namely the permission, power usage, and 
sampling rate.

● Sensor permission. Permission wise, each sensor has different permission 
levels, based on how Android deems their threat to the user’s privacy 
(Mehrnezhad and Toreini 2019). In short, there are three relevant types of 
Android sensor permission for our purpose.

a) No permission. No permission is needed to declare anywhere within 
the app or during run-time. Sensors in this group can silently access the 
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sensors as they wish, which includes the accelerometer, gyroscope, 
magnetometer, ambient light, and proximity.

b) Normal permission. These sensors pose little risk to the user’s privacy. 
As such, they only need to be declared in the manifest file, and Android 
will ask the user just once during installation. Once agreed, the user has 
no way to refuse access in future runs.

c) Dangerous permission. These sensors access high privacy user data 
(e.g. contact information, location data) or may affect the operation of 
other apps. For this group of sensors, the app must display a pop-up 
window explicitly asking the user for permission to access such infor
mation, when the app is first launched. Even after accepted, the user 
has total control to revoke such permission in future runs.

Generally speaking, for the contact tracing purpose, there is a trade-off 
between usability and privacy. Ideally, we would prefer sensors in the ‘no 
permission’ or ‘normal permission’ groups as they deliver seamless user experi
ence (e.g. the app works in a simple click without convoluted pop-up messages). 
Nevertheless, the user should be made clear that such sensors (e.g. Bluetooth, 
WiFi) have the potential to infer their locations.

Figure 3. The two approaches for contact tracing with smartphone sensors. Two nearby phones 
can either sense their appearance and work out the relative distance; or compare the ambient 
environment they are sharing.
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It is worth noting that Android do not strictly associate each sensor to 
a permission type (i.e. a sensor may need several permissions, and 
a permission type may be shared amongst different sensors). For example, 
when an app needs Bluetooth access, it must specify BLUETOOTH permission 
(for Bluetooth communications), and BLUETOOTH–ADMIN permission (for 
Bluetooth settings) in the ‘Normal permission’ group; as well as the ACCESS– 

FINE–LOCATION permission (to initiate a scan) in the ‘Dangerous permission’ 
group, because Android consider that nearby Bluetooth devices information 
including the signal strength may be used to indirectly infer the user location.

● Power consumption. This metric reports the overall energy consumed by 
the app. In the context of contact tracing, this is an important factor to 
consider, since it prolongs the battery life between charging cycles, thus 
allowing more opportunities to detect potential disease contacts, as well as 
allowing the user to continue with other routines on the phone. An inter
esting correlation we spotted is that most no permission and normal 
permission sensors consume little power (see Table 2).

Table 2. Summary of the relevant properties of 14 common sensors in most smartphones, 
sorted in alphabetical order. The data are surveyed from the LG G7 ThinQ phone.

Sensor
Measure 
unit

Sampling 
rate (max)

Power 
usage

Permission  
type Notes

Accelerometer m/s2 500 Hz low none reporting the changing rate of the 
phone’s velocity.

Ambient light lx 4 Hz low none reporting the magnitude of the 
surrounding light.

Barometer hPa 120 Hz low none reporting the surrounding 
atmosphere’s pressure.

Bluetooth dBm various* medium dangerous exchanging information with nearby 
Bluetooth-enabled devices

Camera image-form 60 Hz medium dangerous generating an image of the 
surroundings.

Cellular dBm various* medium dangerous exchanging information with nearby 
phone towers.

Fingerprint image-form 0.5 Hz low dangerous generating an image of the human 
finger.

GPS s, m various* high dangerous reporting the satellite signals, clock 
timestamp, and status.

Gyroscope rad/s 500 Hz low none reporting the changing rate of the 
phone’s rotational motion.

Magnetometer µT 200 Hz low none reporting the magnitude of the 
surrounding magnetic field.

Microphone dB 48 kHz medium dangerous reporting the magnitude and the raw 
surrounding acoustic noise.

NFC N/A 1 Hz low normal exchanging information with nearby 
RFID tags within 10 cm.

Proximity cm 4 Hz low none reporting the distance to the nearest 
object within 10 cm. Some 
proximity sensors only report 
a binary near/far result

WiFi dBm 0.03 Hz high dangerous exchanging information with nearby  
WiFi-enabled devices

*The phone will continue scanning for nearby Bluetooth devices, GPS satellites and Cellular towers, updating the 
results as they come in, until the process is interrupted.
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● Sampling rate. This metric is the sensor’s frequency in providing the latest 
measure. High sampling rate sensors are desirable to discover the smallest 
changes in the environment. Generally speaking, motion related sensors 
(i.e. accelerometer, gyroscope) have higher frequency than others to detect 
the quick changes in phone motions. At the other end of the spectrum are 
Bluetooth, GPS, and Cellular, which will keep scanning and reporting the 
results as they become available, until the process is interrupted.

When it comes to picking which sensors to use, we impose a strong criterion 
that any selected sensor must not directly reveal the smartphone’s position, for 
our sole purpose of proximity tracking, and to avoid potential information 
misuse. This rules out GPS (which directly yields the longitude and latitude), 
and Cellular (whose cell tower location database is publicly available8). The 
ambient light sensor which measures the lighting intensity, is an interesting 
source of information. Yet, its readings are too volatile under different phone’s 
angles. On the same note, the camera, fingerprint, NFC, and time-of-flight’s 
usage were rather specific, and do not appear to be useful for our contact 
tracing purpose at this stage.

Last but not least, as mentioned in the previous section, only the nearby 
phones’ IDs are stored locally on the smartphones, and not the detailed sensor 
data.

4.4.1. Bluetooth for proximity detection
On the smartphones, Bluetooth technology, with its latest iteration called 
Bluetooth Low Energy (BLE), was intended to connect the phone to small 
peripherals (e.g. headphone, gamepad, etc.) in short distance (typically no 
more than 10 metres, and ideally within 2–3 metres), which is a great fit for 
close contact detection.

The detection process using BLE works as follows. First and foremost, one 
phone must act in the ‘Central’ role, and the other phone plays the ‘Peripheral’ 
role. The peripheral phone will constantly send out unsolicited messages 
(including its name, MAC address, etc.) on the 40 BLE channels to inform its 
existence (Contreras, Castro, and de la Torre 2017; De Blasio et al. 2017; Faragher 
and Harle 2015; Kalbandhe and Patil 2016). The central phone, at any time of 
preference, will initiate a scan to look for those peripheral phones. Secondly, 
both phones may establish a BLE connection to exchange information. Ideally, 
the smartphones will alternate between these two roles to avoid the situation 
where everyone is listening while no-one is broadcasting, and vice-versa.

It is worth noting that, as a BLE scan will also reveal the received signal 
strength (RSS), which roughly indicates how far away the nearby peripheral 
phones are, we could estimate the distance using the well-known inverse 
square law of Physics, that is, the signal intensity is inversely proportional to 
the square of the distance from a signal transmitter (Goldsmith 2005). 
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d ¼ 10
Power� BLE RSS

10�nð Þ (1) 

where d is the estimated distance, Power is the RSS measured at 1 metre, 
n is the signal propagation constant (e.g. n = 2 for free-space path loss), BLE– 

RSS is the RSS received by the central phone. Although there are other 
distance models, without knowing how the BLE signal propagates (especially 
challenging indoors), we opted for this simple form of free-space path loss 
model.

Nevertheless, there are two challenges with BLE. Firstly, BLE wireless signal 
does easily penetrate walls and furniture, which contributes to the false positive 
contact detection (i.e. two neighbours separated by a thick wall may be regis
tered as a contact). Secondly, the correlation between the RSS and the distance 
is not strictly linear, because of the signal attenuation (i.e. without an unob
structed line-of-sight between the two phones, the signal waves are strength
ened or weakened as they travel in different directions in the air), and the BLE 
frequency hopping technique (i.e. the phone frequently switches between the 
BLE channels to avoid signal collision, which inadvertently impacts the receiving 
signal at the other end).

In short, we will only employ BLE as a rough indicator to discover nearby 
phones (which could be anywhere up to 30 metres in the vicinity), and to 
kick-start the upcoming procedures involving other sensors. We will later 
demonstrate empirically in detail how frequency hopping may affect the 
accuracy of BLE in estimating the relative distance between the phones in 
Section 5.

4.4.2. WiFi for distance measuring
On the smartphones, WiFi technology was originally intended to connect the 
phone to the Access Points (APs) for internet access. Recently, the WiFi Direct 
peer-to-peer protocol enables two WiFi-enabled devices to communicate 
directly without an AP, over much longer distance (up to 50 metres indoors) 
than Bluetooth (Khan et al. 2017), in which the smartphones will negotiate 
directly between themselves to automatically assign the central and peripheral 
role.

From the contact detection’s viewpoint, WiFi technology may be employed 
for environment comparison, appearance sensing, as well as distance measur
ing purposes.

● For environment comparison. The observation is that most modern 
buildings and public venues have plenty of WiFi APs to provide internet 
access to residents and customers. As such, two smartphones with a similar 
set of observed APs are potentially nearby.

● For appearance sensing and distance measuring. This is performed in 
a similar fashion as with BLE.
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However, there are five major challenges for employing WiFi. Firstly, since 
Android 9, all apps may only initiate a scan at most four times every 2 minutes 
(about once every 30 seconds),9 whilst there is no scanning restriction for 
Bluetooth.10 Secondly, the current implementation of WiFi Direct on Android 
does not expose the RSS of the peer devices, which means the phone needs to 
be set up as a WiFi hotspot for its RSS to be harvested via the usual WiFi scan. 
Thirdly, the glaring weakness of WiFi technology is its long broadcasting dis
tance of up to 50 metres. As such, smartphones on different floors, or even 
separate buildings may still see each other, or observe the same set of WiFi APs, 
which invalidates the environment comparison approach. Fourthly, WiFi con
sumes much higher battery than BLE and other sensors. Lastly, WiFi signals do 
suffer from the same signal multi-path problem as BLE.

Taking into account these concerns, WiFi should only be employed to com
plement BLE. In particular, it should only be called into action when a potential 
contact has been confirmed by BLE. Given the WiFi RSS is considerably more 
stable (i.e. no frequency hopping as in BLE), its distance conversion may be more 
accurately represented (to be empirically assessed in Section 5).

Without loss of generality, given the WiFi RSS sequence (which reflects the 
distance) between the two smartphones W = (w1, . . ., wN), recorded over a time 
window (e.g. 15 minutes based on the WHO recommended infectious 
duration11), where wi (1 ≤ i ≤ N) is the WiFi RSS at time point ith, we employed 
the free-space path loss model, described in Section 4.4.1, to convert the RSS 
into a distance estimate. The mean value of all estimates within the entire time 
window will decide if the two phones were within the infection range (e.g. 1 
metre based on the WHO guideline).

4.4.3. Microphone for proximity detection
Sound is generated by the vibrations of air particles, which are then picked up 
by the human ear and the smartphone’s microphone (Murakami et al. 2018). For 
contact detection, sound may be leveraged for both the appearance sensing 
and the distance measuring purposes as follows (although it is possible to 
encode information within those sounds, yet, for our contact tracing purpose, 
we only need to detect the appearance and the rough distance measure).

For appearance sensing, one smartphone will play the peripheral role by 
emitting a chirp via its built-in loud speaker. The other phones which act in the 
central role will pick up those sounds by their built-in microphone, and response 
with their own chirps to make contact, which indicates that they are in close 
proximity.

For distance measuring, there are two options. The first one is based on the 
concept of time difference of arrival. The second one is based on sound 
amplitude.
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● Time difference of arrival (TDoA). With this approach, the distance 
between the two phones is inferred by timing the moment the chirp was 
sent by one phone, until it is received by the other end. If the clock of both 
phones is perfectly synchronised, the distance is simply calculated as 
distance = speed of sound * elapsed time, with speed of sound is a constant 
(e.g. 343 m/s at 23°C room temperature) (Yavuz 2015).

The rationale of this approach is that acoustic signal travels at a much 
slower velocity (i.e. 343 m/s), compared to WiFi and Bluetooth signals 
which travel at the speed of light (i.e. 300,000 km/s). Therefore, it is more 
feasible to time and compute such distance.

However, there are several challenges. Firstly, it is unlikely that various 
smartphones would share the same clock timing. Secondly, all Android 
sound packages (i.e. SoundPool, AudioTrack and OpenSL ES) have consid
erably non-deterministic latency (i.e. there are unpredictable delay from 
the moment the audio play command was issued, until the actual sound 
was sent out by the built-in speaker), in the region of [180–300 ms]. Given 
that sound travels at 343 m/s, an average of 200 ms error in TDoA estima
tion will lead to more than 70 metres error in ranging estimation, which is 
simply not usable for our purpose.

● Sound amplitude. This approach relies on the same concept as in BLE and 
WiFi RSS ranging, that is, using sound amplitude as distance indicator. The 
central phone plays a chirp. As this chirp travels in the air, it loses pressure 
for which the receiving phone may use to work out the distance to the 
central phone.

The final task is designing a chirp signal to be received reliably within short 
distance by other nearby smartphones, for which there are three criteria to 
consider.

● Frequency. The frequency (in Hz) is the speed of vibration which 
determines the sound pitch (e.g. female voice is perceived to have 
higher pitch than male one). Distance wise, low frequency sound travels 
further than high frequency one, as there is less energy being lost in the 
process. As such, we would prefer high frequency chirp for short dis
tance contact detection. Nevertheless, high frequency chirp tends to 
attenuate more heavily than low frequency one, because of higher 
viscosity caused by many peaks pressuring against the air (Hoppe, 
Höflinger, and Reindl 2012). The major constraint is that, although our 
test phones are capable of recording very high frequency acoustic 
sound, streamlined smartphone microphones may be limited to lower 
frequencies in the human audible range (i.e. 20 Hz to 20 kHz), which was 
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primarily what they were designed for. As such, our chirp signal should 
be within this range.

● Amplitude. The amplitude (in dB) is the size of the vibration which deter
mines the loudness of the chirp. A high amplitude means louder sound, 
which in turns, translates to longer travelling distance. For contact detec
tion, we would prefer low amplitude sound for quiet operation as well as 
limiting the distance to within the short contagion range.

● Duration. The duration (in ms) is the length of the vibration. For contact 
detection, the chirp duration should be short, as multiple chirps may be 
sent simultaneously by other nearby phones, and potentially confuse the 
receiving ends.

Taking all of these constraints into consideration, an ideal chirp for contact 
tracing purpose should have a frequency within 2 kHz to 6 kHz range (as most 
acoustic sounds start to attenuate greatly above 8 kHz (Peng et al. 2007)), with 
an amplitude of about 20 dB (still within the recording range of all smartphone’s 
microphones, yet is perceived as just a small whisper for the human ear), and 
a 50 ms duration (the ideal length to avoid collision with other chirps) (Lazik and 
Rowe 2012). Lastly, each smartphone should use a different frequency when 
communicating to better differentiate with other nearby phones.12

There are two advantages of sound based approach. Firstly, while radio 
waves propagate seamlessly through space, sound waves require a material 
medium (e.g. water, air) to convey from one place to another, which does 
not easily penetrate thick walls, and furniture. Secondly, we may manipulate 
the frequency and loudness properties of the chirp, which indirectly control 
the travelling distance, whereas although theoretically possible to do the 
same with BLE, there is no Android API to modify the BLE sensor’s sensitivity 
at the time of writing. Hence, sound is a great fit for contact tracing.

Nevertheless, there are three challenges for employing sound. Firstly, it does 
suffer from the same multi-path issue as in BLE and WiFi, in which the acoustic 
signals reach the receiving microphone in different paths, due to reverberation. 
Secondly, the sound propagation speed does vary according to different tem
peratures and humidity (this issue may be negligible in real practice, as the 
distance between the phones is rather short for our purpose). Lastly, while BLE 
and WiFi encode their unique sender ID within the signal, we need to design 
such handshaking process from scratch for sound. Our solution is leveraging BLE 
signal to make contact between the two smartphones first, before transmitting 
the chirp.

4.4.4. Magnetometer for ambient magnetic field comparison
Magnetism exists everywhere on Earth, which is caused by the movements of 
molten metal at the Earth’s core. This natural magnetic field is strongly per
turbed by ferrous metal from most building’s materials (Kim and Kong 2016; 
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Kim, Seo, and Baek 2017; Storms 2019). Therefore, small indoor areas within the 
building may report different magnetic signatures, which is an opportunity for 
matching smartphones contact.

The magnetometer measures the ambient magnetic field strength around 
the phone in three-dimensional space. However, as the sensor is fixed within the 
phone body, its coordinates align with the phone’s body frame. As such, the 
orientation of the phone varies the magnetometer reading, even in the same 
spot. This challenge may be addressed by ignoring the direction of the mag
netic field vector, and computing the total scalar magnitude m as follows 
(Nguyen, Watkins, and Luo 2017). 

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y þm2

z

q
(2) 

where mx, my, and mz in (µT) are the magnetic field strength along the x, y and 
z axis respectively.

Without loss of generality, given Alice’s magnetometer measures A = (m1, 
. . ., mN) and Bob’s magnetometer measures B = (m1, . . ., mM), where N and M may 
be different due to various sensor’s sampling rates. We will apply the method 
described in (Nguyen, Watkins, and Luo 2017) using Dynamic Time Warping 
(DTW) which was designed to compare the magnetic sequences of different 
length, and to handle the various sensitivities from different sensor vendors (i.e. 
a more sensitive sensor may return higher reading values). In essence, DTW finds 
the optimal warped path between the two sequences by building an N-by-M 
matrix, in which [ith, jth] is the distance between measures mi and m’j calculated 
as follows (Nguyen et al. 2019b). 

d mi;m0 j
� �

¼ mi � m
0

j

� �2
(3) 

The optimal warped path of length k: w(1, 1), . . ., w(n, m) between the two 
sequences, that minimises the warping cost is computed as follows (Nguyen 
et al. 2019b).
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w i; j � 1ð Þ
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<

:
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=
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with (1 < i < N, 1 < j < M).

At the end, the DTW score is computed as w(n, m) divided by the length 
of the warped path. If the computed score of the two magnetic sequences 
is below the threshold, the two phones are deemed to be in close proximity 
(see Section 5.5 for the empirical experiments with the magnetic field 
threshold).
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4.4.5. Barometer for air comparison
As most viral diseases are airborne, having the ability to detect if two persons 
are breathing the same air is profoundly valuable. Regrettably, all sensors 
discussed so far inherit the same weakness from the wireless signal property, 
that is, electromagnetic and sound wave can penetrate walls. As such, two 
persons fully segregated by a thick, concrete wall may still be detected by 
BLE, WiFi, or sound signal, which results in a false positive being registered.

The barometer which measures the ambient air pressure around the phone, 
may offer a solution for this challenge. The observation is that, the readings are 
varied by the air weight in the atmosphere, caused by different altitudes (e.g. on 
different building floors), or by the winds (e.g. a closed indoor space has 
different measures from an open outdoor one) (Kim, Kim, and Han 2017; Li, 
Harvey, and Gallagher 2013; Nii et al. 2017).

Nevertheless, if the phone is kept in a tight pocket, handbag, etc., the air 
measures are potentially different, although the two persons are in the same 
place. This challenge may be addressed with the help of the proximity sensor, 
which was originally designed to measure the distance to the nearest object 
facing the phone screen (i.e. it is intended to detect the side of the human face 
to switch off the screen while answering a call). By using the proximity sensor, 
the system may detect whether the phone is left in tight space or in the open to 
trigger the barometer reading.

Without loss of generality, given the barometer measure sequence from two 
smartphones, we employed the same DTW approach as in the above Section 
4.4.4, to work out a score reflecting the difference between the two barometer 
sequences. If the score is below the threshold, the two phones are deemed to be 
in close proximity, from the barometer’s perspective (see Section 5.5 for the 
empirical experiments with the air pressure threshold).

4.5. Fusion of sensors information

Having studied the individual role of each sensor, we may now present our 
strategy to combine the above six sensors together. The system prioritises the 
appearance sensing of other nearby phones first, then moving on to measure 
the relative distance between them, and finally comparing the shared environ
ment to reduce the number of false positives (see Figure 4 and Table 3). The 
detailed steps are as follows.

Appearance sensing

Step 1: The app periodically scans for nearby smartphones using the BLE 
signal. The rationale for using BLE as the primary sensor for appearance 
sensing, although other sensors (i.e. WiFi, microphone) are capable of the 
same function, is two-folds. Broadcasting distance wise, WiFi’s range would 
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be too long for consideration (with visibility of up to 50 metres away); 
acoustic sound, despite capable of adjusting its range, may not be reliable 
in noisy environment; whereas BLE offers the most compromised option for 
this matter. Power consumption wise, BLE consumes the least amount of 
energy amongst these sensors. This step is repeated until a smartphone is 
discovered.

Step 2: When a nearby phone is found by BLE, its range could be anywhere 
within 30 metres, including being on the other side of a thick wall or furniture. 
As such, this step attempts to further reduce these false positives with sound 
sensing. Firstly, the app does a preliminary check of the ambient noise. Since our 
chirps have an amplitude of around 20 dB, if the background noise is above this 

Figure 4. The flowchart of our contact tracing process which involves different smartphone 
sensors at each stage. At the end of each of the three main stages, an output regarding the 
phone’s visibility, the relative distance estimate, and the environment difference are produced 
respectively.

Table 3. Overview of the role of the smartphones sensors employed by our system.
Sensor Appearance sensing Distance measuring Environment comparison

Barometer* N/A N/A Shared air
Bluetooth Coarse-grained N/A N/A
Magnetometer N/A N/A Ambient magnetism
Microphone Fine-grained Fine-grained N/A
WiFi N/A Medium-grained N/A

*The proximity sensor is used as a trigger for barometer.
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threshold, the system skips to Step 3, otherwise it performs a chirp scanning to 
see if the other phone can be heard (sound does not penetrate walls as easily as 
WiFi and BLE, hence there is a chance the phones are truly close).

Distance measuring

Step 3: If the environment is too noisy, the system computes the WiFi-based 
distance between the phones (although WiFi has a theoretical longer range than 
BLE, it does not use frequency hopping, hence resulting in much stable RSS). 
Otherwise, if the nearby phone can be reached by the chirp, the system computes 
the sound-based distance, then proceeds to compute the WiFi-based distance as 
well. In the end, those two distances are averaged for a better distance estimate.

Environment comparison

Step 4: If both smartphones are in open space (as verified by the proximity sensor), 
the system compares their ambient air pressure, to assess whether the respective 
phone owners are breathing the same air (which is critical for airborne diseases). 
Otherwise, the system just compares the ambient magnetic field around the 
phones.

The above processes may be viewed as in an on-line setting, where sensor 
measures arrive in real time, and the system should decide on three output 
metrics, that are (in decreasing priority order), whether the two smartphones are 
close, what is the relative distance between them, and if they are sharing the same 
environment. Ideally, for a contact between the two phones to be registered, the 
app should detect that they are close (via BLE and/or sound), and their estimated 
distance is less than 1 metre according to WHO’s guidance on infection (via WiFi 
and/or sound), and their shared environment is similar (via barometer and/or 
magnetometer). The final decision for each metric will be made over a 15 minute 
window (which is the duration to be infected according to the WHO’s guidance), 
where the appearance can be a simple majority vote (e.g. if there are 10 samples in 
this period, in which over 50% of them indicate a match, then the final decision is 
that they are close), the distance estimate and the environment sharing are an 
average of individual measures over this period window.

4.6. Challenges

Although the aforementioned sensors are undoubtedly useful for contact tracing, it 
is worth remembering that all of them were primarily designed for other purposes in 
mind. As such, the following challenges should be taken into account.

● Heterogeneous sensors. Smartphones sensors come in different shapes 
and forms according to their makers, which may impact their sensitivities 
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to the environment (e.g. some phones may receive a strong WiFi or BLE 
signal from faraway thanks to a bigger antenna, whereas others need to be 
much closer). This challenge specifically impacts the environment observa
tion approach, as one smartphone may view the world around differently 
from another phone.

● Noisy measures. Smartphones sensors are miniaturised devices being 
packed tightly in a small phone body, whose measures are particularly 
noisy, not to mention the interference from other sources (e.g. the 2.4 GHz 
band is overcrowded with devices such as PC, laptop, microwave, radio, 
etc.). This challenge impacts the reliability of the sensors, as a sudden 
electronic noise may be misclassified as a true measure.

● Signal multi-path. In a convoluted environment, there is rarely an unob
structed line-of-sight between the two smartphones. As such, the radio and 
sound waves travel in unexpected fashions in the air, which results in 
various receiving signals at the other end. This challenge strongly impacts 
the true distance estimate which is heavily based on the RSS. We address 
this concern by measuring several signals in the same place (i.e. increasing 
the probability of observing the good signal), and combining signals from 
different sensors. It is worth noting that as people approach closer to each 
other, there is less likely an obstacle between them, which lessens the 
impact of this challenge.

5. Empirical experiments

Having presented our contact tracing proposal, we will now assess its feasibility 
and performance in various experiments. In doing so, we aim to address the 
following research questions.

● Appearance sensing wise, what is the typical indoor and outdoor detection 
range of BLE and sound ?

● Relative distance wise, what is the offset between the estimated sound 
based, and WiFi based distance measure and the true distance ?

● Environment comparison wise, what is the feasibility of using air pressure 
and magnetic field ?

● Overall contact detection wise, what is the accuracy (in terms of the 
number of false positives) of our approach, compared to pure BLE based 
system ?

5.1. Testbeds

Three realistic testbeds, representing both indoor and outdoor environment, 
were purposely selected to examine the feasibility and performance of our 
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approach (see Figure 5). The first testbed contains a five-room office. The second 
testbed contains the communal areas of a 14-storey building. The third testbed 
is an open-air parking garage.

Sample wise, for each testbed, we record 80 test instances, where each 
instance contains a pair of samples from two test phones at two different 
locations. In total, there are 240 test instances across the 3 testbeds. Distance 
wise, 60 of these instances are within 1 metre (i.e. the contagion range advised 
by WHO), another 60 of them are within 1 metre and 2 metres (i.e. the contagion 
range adopted by most European countries), 40 of them are within 2 metres and 
3 metres (i.e. the false positive buffer zone), and the remaining 80 are some
where between 3 metres and 30 metres (see Table 4).

Ambient environment wise, the five-room office represents a typical indoor 
condition, with plenty of electric appliances (e.g. laptops, PCs, cameras) operat
ing in the background, which may impact the wireless signal between the 
phones. The 14-storey building allowed our approach to be verified on different 
floor levels. The parking garage represents an ideal environment with wide 
open space containing unobstructed line-of-sight between the devices for 
minimal signal path loss.

Figure 5. The floor plans of the three testbeds.
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5.2. Test devices and subjects

Three smartphones were selected for testing, namely the LG G7 ThinQ, Samsung 
Galaxy S8, and Lenovo Phab 2 Pro (from now on, they will be simply referred to 
as LG, Samsung, and Lenovo phones). They were chosen to represent a variety 
of smartphones in the past 5 years, as well as covering different sensors 
manufacturers and Android operating systems (see Table 5). The LG phone 
will play the role as the central phone, whereas the Samsung and Lenovo 
phones will play the peripheral role.

Using the above test devices, the sensor data were collected by two people at 
240 test locations (as described in Section 5.1), during daytime where there 
were other people around in the same premise, over the period of two months. 
During the experiments, the phones were either held in the user’s hand or left in 
the pocket. For each test instance, we collected the sensor measures over 
5 minutes (although a true positive contact is registered when two phones 
are within 1 metre for 15 minutes, according to the WHO’s Covid-19 guidelines, 
yet, we relax the measuring time to speed up the experiments).

5.3. Appearance sensing analysis

The purpose of the first experiment is assessing the visibility of BLE and sound, 
with varying distance between the two smartphones and the environment 
settings. For each of the 240 test locations, one smartphone constantly looks 
for the other during a fixed 1-minute period, keeping a record of each scan. We 
used the same pair of LG, Samsung phones in this experiment for consistency.

For BLE, the result revealed three interesting trends (see Figure 6). Firstly, the 
further the distance between of the two phones was, the lower the 

Table 4. Overview of the distribution of test samples. More emphasis 
was given to samples within 3 metres as they are within the infection 
range of our interest.

Distance between phones Indoor samples Outdoor samples

(0–1) metre 40 20
(1–2) metres 40 20
(2–3) metres 20 20
(3–30) metres 20 60

Table 5. Overview of the three smartphones used to verify our approach.
Phone model Year 

released
Android 

OS
WiFi/BLE 
vendor

Magneto
meter 

vendor

Microphone 
vendor

Barometer 
vendor

Proximity 
vendor

LG G7 ThinQ 2018 9.0 Qualcomm Asahi Kasei LG LG LG
Samsung 
Galaxy S8

2017 7.0 Murata Asahi Kasei Knowles Samsung Samsung

Lenovo Phab 2 2016 6.0.1 Qualcomm Bosch Lenovo Lenovo Liteon
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discoverability rate was. At 20 metres indoors, the detection number was just 16, 
compared to 124 of that when two phones were 1 metre apart. Secondly, the 
indoor visibility was noticeably poorer than outdoors (which is understandable 
with almost zero line-of-sight between the phones). Thirdly, they may still see 
each other at 20 metres apart indoors, and 30 metres outdoors. The third result 
has a strong implication for contact tracing, as these detections are clearly not in 
the contagion range, and may trigger a false positive.

For sound, the appearance characteristics were similar to that of BLE, in which 
the further away the distance was, the less likely it could be heard. Yet, there was 
one clear distinction, that was, far fewer test instances beyond 2 metres can be 
heard with our chirp than with BLE (e.g. out of 20 test instances with more than 
3 metres distance, only 8 of them could be reached with sound) (see Figure 7).

Since both BLE and sound may penetrate walls and furniture, their visibility 
was tested on different floor levels, with about 3 metre ceiling height. 
Interestingly, we got no sound feedback beyond the first floor, whereas BLE 
signal could penetrate up to the 6th floor (see Figure 8).

We do not report the scanning frequency for WiFi and sound, because of the 
WiFi scanning restriction on Android (at most 4 scans every 2 minutes), and the 
design of our chirp broadcasting interval (to avoid sound collision), as discussed 
in detail in Sections 4.4.2 and 4.4.3.

In summary, the results in this section reveal that BLE-only-based systems may 
score plenty more false positives due to its high visibility of up to 20 metres indoors 
and 30 metres outdoors. Sound, on the other hand, with much shorter travelling 
range, may offer an extra layer of appearance sensing information on top of BLE.

Figure 6. The scanning frequency of BLE, reported at 240 test locations. At each location, the 
central LG phone scans for 60 seconds and reports the result. In general, more measures were 
available outdoors than indoors, and at shorter distances.
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5.4. Relative distance analysis

This section assesses the feasibility and accuracy of the WiFi-based and sound- 
based distance estimate.

Since the only output we have, is just a simple number in the form of the WiFi 
RSS and sound pressure, we will assess how reliable this measure is, in the most 

Figure 7. The hearing sensitivity of sound indoors and outdoors with respect to different 
distances between the two smartphones. The shaded areas represent test locations without any 
BLE or sound signal. Overall, the sensitivity decreases as the distance increases.

Figure 8. The visibility of BLE and sound on 13 floor levels, with 10 test locations per floor. The 
central LG phone was placed on the ground floor, while the Samsung phone keeps climbing up. 
No sound contact could be made beyond the 1st floor, where BLE can still be heard on the 6th 

floor. The shaded areas represent test locations without any BLE or sound signal.
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ideal condition. As such, we performed the experiment in the open-air parking 
garage, where the LG phone was fixed in one place, while the Lenovo phone 
moved away from it in a straight line. At every one metre along the way, 10 WiFi 
RSS and sound signal were taken. Theoretically, we would expect a steady 
decrease of such measures following the free-space path loss model, with 
respect to increasing distance.

For WiFi, the results revealed three surprising characteristics (see Figure 9). 
Firstly, even when both phones are static, with a clear line-of-sight between 
them and almost no interference from the environment (i.e. the signal may still 
bounce off the floor, nevertheless), the WiFi RSS still varies in the same spot. 
Secondly, strong signals (within 3 metres) and weak signals (beyond 20 metres) 
tends to be more stable than medium signals (from 3 metres to 20 metres). 
A plausible explanation is that at short distance the signal does not take long to 
travel, whereas by the time it travels 20 metres, it has lost most of its energy. 
Medium distance is the central spot for signal attenuation. Thirdly, at the same 
position, BLE RSS fluctuates significantly more than WiFi’s, due to frequency 
hopping.

For sound, the result revealed a remarkably consistent measure with very 
little variation in this ideal outdoor setting. This ascertains its usefulness in 
estimating the relative distance between the smart phones.

Having understood the baseline expectation of BLE, WiFi and sound propa
gation characteristic, we may now assess their estimated distance’s accuracy 
with our 240 test instances, both indoors and outdoors. For each test location, 
the true distance is the shortest straight line connecting the two smartphones 
discounting any walls and furniture in-between, the estimated WiFi and sound 
based distances are obtained from the free-space path loss model (as discussed 
in Sections 4.4.2 and 4.4.3), the result is an average of 10 sound measures and 4 
WiFi measures (the Android cap for 2 minute scan).

The result revealed the challenging impact of signal multi-path, where 
both WiFi based and sound based approaches produced high distance 
estimate error (see Figure 10). In particular, sound based approach achieved 
less than 2 metre distance error 90% of the time, whereas WiFi based 
approach could only manage 6.5 metre distance error 90% chance, demon
strated by the Cumulative Distribution Function (CDF) plot. The confidence 
bound of sound based result, computed by the Kaplan-Meier estimator 
(Goel, Khanna, and Kishore 2010), was also noticeably tighter than WiFi 
based one.

However, it was surprising that, when focusing on just indoor test locations 
within 3 metres, where there are furniture, walls between the smartphones, WiFi 
based estimated distances were slightly more accurate than sound one (see 
Figure 11). This result suggests that a combination of WiFi and sound may 
produce a better distance estimate.
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5.5. Environment comparison analysis

This section assesses the feasibility and accuracy of using the barometer and 
magnetometer to determine whether the two smartphones are sharing the 
same environment, in particular, ‘breathing’ the same air, which is critical for 
airborne infection.

Regarding air pressure, we assess its feasibility in close contact detection by 
experimenting its measure across the vertical and horizontal spaces.

Vertical space wise, we collect 10 barometer readings with the LG and 
Samsung phones in the 14 floor building, with about 3 metre ceiling height 
separating each floor. The result reveals three useful information (see Figure 12a). 
Firstly, the average air pressure strictly decreases as the altitude increases. 
Secondly, there was a clear measure gap of around 0.43 hPa between each 
floor. Thirdly, the reading variations are particularly low (i.e. rather stable) per 
floor, of around 0.13 hPa.

Horizontal space wise, we averaged the air pressure measures at 120 indoor 
test locations and 120 outdoor test locations, which reported 1,012.4 hPa and 
1,012.59 hPa respectively (see Figure 12(b)). The 0.19 hPa average difference 
may provide a good indication to separate the indoor and outdoor users. Note 
that both the indoor and outdoor test environments are on pretty much the 
same ground level, with the parking garage locating next to the office building. 
The physical separation between them are walls, doors which may not be kept 
closed at all times. Therefore, a plausible explanation of such difference measure 
is that the building’s exhaust ventilation system must have made an impact on 

Figure 9. Comparison of the WiFi, BLE, and sound signal propagation in an ideal open-air 
setting with a clear line-of-sight between the two smartphones. The sound signals are scaled by 
the right side y-axis. Acoustic sound and WiFi signals have the least amount of variations, 
compared to BLE, at the same location.
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the air pressure. Much more importantly, the variation of air pressures within the 
same building floor, or within the parking garage, is negligible and being lost 
within the sensor’s mechanical noise, which turns out to be a great benefactor 
for our purpose, since smartphones within those areas are ‘breathing’ the same 
air space.

Figure 10. Comparison of the overall estimated distance based on WiFi and sound signal. The 
95% confidence bound of sound based result, calculated by the Kaplan-Meier estimator (Goel, 
Khanna, and Kishore 2010), is noticeably tighter than WiFi one.

Figure 11. Comparison of the indoor estimated distance based on WiFi and sound signal for test 
locations less than 3 metres apart. WiFi based distance estimates were slightly more accurate 
than sound one.
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Regarding the magnetic field, the magnitude plot of 240 test locations across 
the 3 testbeds revealed two interesting observations (see Figure 13). Firstly, the 
magnetic variation oscillates much stronger indoors than outdoors, with 
a maximum magnitude of nearly 120 µT in the office testbed, compared to 
just 67 µT in the parking garage testbed. The high number of electric appliances 
and the building materials may have been accounted for this variation. 
Secondly, the magnetic anomalies happened in small areas (i.e. only locations 
within a small room will have similar high magnetic disturbance).

To assess the efficiency of the magnetic readings with respect to the distance 
between the two smartphones, we separate the 240 test locations into 4 categories, 
that are, tests within [0–1] metres, [1-2] metres, [2-3] metres, and [3-30] metres 
(more emphasis was given for those under 3 metres as they are of our particular 
interest), then computing the magnetic magnitude difference between the two 
smartphones in each category. The result demonstrated a much smaller Euclidean 
distance for close ranges, which implies that smartphones in increasingly long 
distance may observe much different magnetic readings (see Figure 14).

Ultimately, the question is, how would the air pressure and the magnetic field 
be employed to determine if the two smartphones are in close proximity ? 
Based on the above empirical experiments, air pressure wise, an empirical 
constant of 0.15 hPa difference threshold (which is above the sensor noise, 
but is still below the air pressure separation) may be used to determine if two 
smartphones are in close proximity. Magnetic field wise, an empirical constant 
of 20 µT difference threshold was chosen. In the next section, we will assess how 
those measures affect the overall system performance.

5.6. Contact detection accuracy analysis

Having assessed each of the three processes separately, we may now present 
the general system accuracy in detecting smartphones contact. The perfor
mance metrics are summarised in Table 6.

Figure 12. The air pressure measures in different environments.
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Figure 13. The magnetic heat map visualisation of the three testbeds. The colour maps have 
been put to the same scale.

Figure 14. The Euclidean distance between the magnetic measures of the two smartphones at 
various distances. Close range samples have much smaller magnetic difference than long range 
ones.
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For a true positive contact to be registered, both smartphones need to be 
within 1 metre of each other for at least 15 minutes (according to the WHO’s 
Covid-19 infection guideline). In our tests, we will slightly neglect the time 
duration constraint, and will only observe 5 minutes per test location to speed 
up the experiment procedure. In contrast, a contact is considered as a false 
positive, if the phones were more than 1 metre apart (i.e. the contact should not 
have been registered by the system). Along the same line, a true negative 
contact is one which was not recorded by the system, and the phones were 
indeed more than 1 metre apart. Lastly, a false negative contact is one which 
was not recorded by the system, although the phones were within 1 metre in 
reality.

Overall, out of 240 test instances, when only BLE appearance sensing was 
employed, the number of false positives was rather high at 180 (with most of 
them indoors) which results in a system accuracy of just 25%. These figures are 
unsurprising given the high visibility of BLE. By incorporating distance measur
ing, the number of false positives dropped significantly to just 61, and more 
than doubled the system accuracy. However, the trade-off at this point was the 
increasing number of false negatives, which was unfortunately wrongly dis
carded by inaccurate distance estimates. Lastly, by applying the environment 
comparison on top, the number of false positives was further reduced to just 9, 
boosting the overall system accuracy to 87.08% (see Table 7).

5.7. Summary of results

Having presented the above experimental results, we may now reflect on the 
research questions posed earlier.

Table 6. Performance metrics in the contact tracing context.
Metrics Note

True positive (TP) True infection contact registered by the system
False positive (FP) Harmless non-infection contact registered by the system
True negative (TN) Harmless non-infection contact ignored by the system
False negative (FN) Actual contact but ignored by the system
Overall accuracy TP + TN   

TP + TN + FP + FN

Table 7. Performance comparison of different system mechanics. A true positive contact means 
the real distance between the smartphones is within 1 metre.

System mechanics Sensors employed FP FN TP TN Accuracy

Appearance BLE only 180 0 60 0 25%
Appearance, distance BLE, WiFi, Microphone 61 22 38 119 65.42%
Appearance, distance, environment BLE, WiFi, Microphone, Barometer, 

Magnetometer
9 22 38 171 87.08%
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With regard to sensing based on the device visibility only, two smartphones 
employing just BLE may still see each other well beyond the 2 metre contagious 
threshold (as employed by most European countries), in both indoor and out
door environments with and without obstacles in-between. In some test 
instances, the BLE visibility could be up to 20 metres indoors and 30 metres 
outdoors. On the other hand, two smartphones more than 2 metres apart were 
barely communicable using sound (with a chirp amplitude of 20 dB). In parti
cular, out of 20 indoor test instances beyond 3 metres, while all of them are 
visible with BLE, only 8 were reachable with sound. In addition, the further the 
distance between the phones was, the lower the discoverability rate was. This 
result suggests that BLE-only based system may return more false positives due 
to its high visibility, and several sensor measures should be taken at each 
location to ensure good coverage (see Section 5.3 for more detailed results).

With regard to the relative distance estimate, it was highlighted that all 
technologies (i.e. WiFi, BLE, sound) struggled to convert their signal measures 
to precise distance estimation, especially indoors with a large gap between the 
devices, due to the signal multi-path phenomenon. However, when focusing on 
test locations within 3 metres, both WiFi and sound based distance estimates 
were around 2 metre error, 90% of the time. This result suggests that WiFi and 
sound could be combined (e.g. averaged result) to produce a more accurate 
relative distance estimate (see Section 5.4 for more detailed results).

With regard to the feasibility of environment comparison, the experiments 
across 14 building floors revealed that the air pressure produced by the smart
phone barometer strictly decreases as the altitude increases, with a clear mea
suring gap between each floor, and a low signal variation on the same floor. In 
addition, there was a clear difference between the indoor and outdoor air 
pressures. Lastly, the magnetic field measures vary significantly amongst small 
indoor areas. This result suggests that the air pressure and the magnetic field 
could provide an extra piece of information in helping to decide whether two 
smartphones are sharing the same airspace (see Section 5.5 for more detailed 
results).

With regard to the overall contact detection accuracy, for BLE-only system, 
the number of false positives was rather high at 180 (out of 240 test instances), 
with just 25% accuracy. However, by incorporating WiFi and sound distance 
estimate, the system scored just 61 false positives, with more than 65% accu
racy. Finally, by applying air pressure and magnetic field comparison on top, the 
system allowed just 9 false positives, with 87% accuracy. This result demon
strated the usefulness of combining various smartphone sensors, over single 
BLE technology that most existing contact tracing works are currently relying on 
(see Section 5.6 for more detailed results).
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6. Conclusion and further work

We have presented our novel, yet practical smartphone-based contact tracing 
approach. Through-out the six sections, we have thoroughly assessed the 
feasibility and the accuracy of our system in three realistic indoor and outdoor 
testbeds.

From our empirical results, we come to the conclusion that BLE only 
approach would suffer from a high number of false positives, due to its high 
visibility of up to 30 metres outdoors and 20 metres indoors, as well as high RSS 
variation because of its frequency hopping technique. WiFi signal, despite its 
long range distance, possesses much more stable RSS, and combining with 
sound signal would further enhance the distance estimate. More importantly, 
we recognise the natural property of WiFi, and BLE signals which may penetrate 
walls easily. To this end, air pressure measure provided by the barometer and 
the magnetic field magnitude provided by the magnetometer were employed 
to determine if the users are breathing the same air.

Ultimately, a system making vital decisions about the people’s health such 
as contact tracing should be reliable and informative. Because of several 
number of parameters involved in the process (e.g. visibility, distance, time), 
it is more helpful to attach other information into all contact registrations (i.e. 
a contact estimated to be within 50 cm in more than 15 minutes should have 
a higher infection chance, than one estimated to be within 2 metres), rather 
than wholly relying on a binary (yes/no) contact detection. Additionally, 
exchanged information between the phones could be compressed to reduce 
the transferring time. This aspect is particularly relevant in the topic of infor
mation exchange and could further improve this work. Looking further ahead, 
it is critical to recognise that viral infections (e.g. Covid-19, SARS) are spread 
through the air. As such, contact tracing technologies should be able to make 
distinction between a true contact in shared air space, or a false one segre
gated by thick walls, to which, this paper is hoping to inspire future similar 
contact tracing approaches.

Notes

1. https://www.statista.com/statistics/300378/mobile-phone-usage-in-the-uk–last 
accessed in 5/2020.

2. https://public.flourish.studio/visualisation/2241702/ – last accessed in 7/2020.
3. https://www.apple.com/covid19/contacttracing – last accessed in 7/2020.
4. https://govextra.gov.il/ministry-of-health/hamagen-app – last accessed in 7/2020.
5. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326- 

sitrep-66-covid-19.pdf – last accessed in 5/2020.
6. https://www.pepp-pt.org – last accessed in 7/2020.
7. https://www.apple.com/covid19/contacttracing – last accessed in 7/2020.
8. https://opencellid.org – last accessed in 5/2020.
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https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://www.pepp-pt.org
https://www.apple.com/covid19/contacttracing
https://opencellid.org


9. https://developer.android.com/guide/topics/connectivity/wifi-scan – last accessed in 
5/2020.

10. Strictly speaking, since Android 8, the startScan() method does impose four predefined 
scanning configurations, where the fastest SCAN–MODE–LOW–LATENCY option only 
scans for about 300 ms. However, it is still possible (even on the latest Android 10) to 
call the deprecated startLeScan()/stopLeScan() methods introduced since Android 5 to 
fully control the scanning cycle.

11. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326- 
sitrep-66-covid-19.pdf – last accessed in 7/2020.

12. Although it is possible to construct a new chirp on the fly with new properties to 
quickly adjust to the real-time environment, we reckon this process would add unne
cessary complexity and power usage to the system. Hence, we leave this for future 
investigations.
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