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ABSTRACT ARTICLE HISTORY
Contact tracing is widely considered as an effective proce- Received 7 June 2020
dure in the fight against epidemic diseases. However, one of Accepted 24 July 2020
the challenges for technology based contact tracing is the KEYWORDS

high number of false positives, questioning its trust- Contact tracing; Covid-19;
worthiness and efficiency amongst the wider population for smartphone sensors
mass adoption. To this end, this paper proposes a novel, yet

practical smartphone-based contact tracing approach,

employing WiFi and acoustic sound for relative distance

estimate, in addition to the air pressure and the magnetic

field for ambient environment matching. We present a model

combining six smartphone sensors, prioritising some of them

when certain conditions are met. We empirically verified our

approach in various realistic environments to demonstrate

an achievement of up to 95% fewer false positives, and 62%

more accurate than Bluetooth-only system. To the best of our

knowledge, this paper was one of the first work to propose

a combination of smartphone sensors for contact tracing.

1. Introduction

During any viral outbreak, people who have been in close contact with
a contagious victim, are at risk of being infected themselves. Therefore, being
able to detect such ‘contacts’ early, correctly, and effectively, is critical to
manage and suppress the disease. In the past outbreaks (e.g. SARS, Ebola,
Swine flu, etc.), contact tracing has proven to be one of the most vital instru-
ments for public health experts. However, as modern viruses (e.g. Covid-19)
have evolved to become far deadlier and more infectious, conventional contact
tracing approaches are urgently in need to be revamped by modern
technology.

In the past decade, the continual proliferation of smartphones has changed
the consumers’ behaviour. Globally, more than 3.5 billion people own
a smartphone, and in the United Kingdom alone, more than 94% of adults
have one.' The smartphone may now be considered as an indispensable neces-
sity to serve most people’s daily routines, from essential communications (e.g.
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family and friend chatting, email and text messaging), to information seeking
(e.g. news reading, web surfing, route navigation), to entertainment purposes
(e.g. music listening, photo taking, game playing), to health management (e.g.
fitness tracking). Coupling with the fact that smartphones are powerful mini-
computers equipped with a variety of sensors, this may well be the leverage for
technology based contact tracing that we have been searching for.

Recently, Bluetooth Low Energy (BLE) technology has been viewed as the
future prospect for automated contact tracing, thanks to its low power con-
sumption and its relatively short communicating distance. However, from the
application viewpoint, BLE bears two major issues, which were revealed by
recording the raw BLE received signal strength (RSS) between two smartphones
at fixed positions, with increasing distance away from each other in a straight
line (see Figure 1). Visibility wise, two smartphones may still be reached at up to
20 metres indoors and 30 metres outdoors, because of the wireless signal multi-
path. Distance wise, it is challenging to determine when two smartphones are 2
metres or 6 metres apart, based on the BLE RSS which varies strongly (much
more indoors) because of its frequency hopping technique (to be discussed in
Section 4.4.1).

To this end, this paper proposes a contact tracing system based on non-
location non-intrusive smartphones sensors (no GPS or Cellular). Our approach
combines 6 such sensors (i.e. barometer, Bluetooth, magnetometer, micro-
phone, proximity, and WiFi), in one uniform model to detect the contacts of
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Figure 1. The two problems of BLE based contact tracing system. Firstly, two smartphones may
still be visible at 30 metres apart outdoors. Secondly, it is hard to tell the difference between 2
to 6 metres as the RSS standard deviation (demonstrated by the shading areas) is noticeably
high. This experiment was performed by measuring the BLE RSS between two phones at pre-
determined fixed positions with increasing distance away from each other in a straight line.
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nearby phones. We present extensive empirical experiments to assess the
feasibility and performance of such system.

1.1. The contributions of this paper

Overall, the paper makes the following novel contributions.

e We propose a new concept of multi-smartphone-sensor system for contact

tracing.

e We assess the feasibility of individual sensor with respect to contact
tracing.

¢ We analyse the performance of the proposed system in three real-world
testbeds.

To the best of our knowledge, this paper was one of the first work to propose
a combination of smartphone sensors for contact tracing, and the first one to
assess the feasibility and the performance of such approach.

The remaining of the paper is organised into six sections. Section 2 overviews
other related work. Section 3 explains the concept of contact tracing, and its
significance. So that, Section 4 will build on, to introduce the idea of contact
tracing with multiple smartphone sensors. Then, Section 5 details the empirical
experiments. Finally, Section 6 concludes our work and outlines future research.

2. Related work

As our work is dedicated to co-location smartphone-based contact tracing
system, which does not involve any type of location database, we will mainly
concentrate on similar approaches in the literature. At the end of the section,
Table 1 will briefly summarise these existing works.

BLE based contact tracing is perhaps the most popular approach, which was
first proposed by the Flu-Phone project (Yoneki 2011) (note that they also mixed
in GPS coordination data). Due to the Covid-19 pandemic, several independent
BLE solutions were implemented around the world, often contracted by
national agencies (see the MIT list of Covid tracker apps by nations).? One of
the very first was BlueTrace by the Singaporean government, which senses
nearby smartphones via BLE scanning and approximates the distance between
them via the BLE RSS (Bay et al. 2020), which was also the standard blueprint for
most BLE-based apps. Most recently, Google and Apple joined force to create
the Google/Apple Exposure Notification (GAEN) API,> aiming to streamline the
BLE background scanning and recording process, as well as addressing the user
privacy concern for contact tracing apps, set by the Decentralised Privacy-
Preserving Proximity Tracing (DP-3 T) protocol (Hubaux 2020). Unfortunately,
it is currently only available for government agencies to adopt, and there have
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Table 1. Overview of existing smartphone-based contact tracing approaches. Most of them are
single technology based.

Sensor References Note

employed

BLE (Bay et al. 2020, Dehaye and Reardon  This is the most popular approach for contact tracing
2020, Leith and Farrell 2020, Yoneki right now. It employs BLE scanning for visibility
2011) discovery, and the signal strength to estimate the

relative distance between devices.

Camera (Preethika et al. 2020, Seetharaman Employing machine learning techniques such as facial
2020, Tabari et al. 2020, Vaughan recognition to track civilians.
2020)

GPS (Raskar et al. 2020, Sonmez and Elik Cross-checking the location trails of registered users to

2020, Wang, Ding, and Xiong 2020) discover contacts.
Magnetism (Jeong, Kuk, and Kim 2019, Nguyen et al. Relying on the magnetic anomalies caused by ferrous

2019a, Nguyen, Watkins, and Luo metals in most building infrastructure to record the
2017) users’ magnetic fingerprints.

WiFi (Carlotto et al. 2008, Krumm and Utilising the public WiFi APs to detect contacts, where
Hinckley 2004, Nguyen, Luo, and two co-located smartphones share the same set of
Watkins 2015) APs at a particular moment.

been some concerns of its effectiveness due to sporadic scanning interval and
over-simplified BLE scanning report (Dehaye and Reardon 2020; Leith and
Farrell 2020).

Camera based solution, which is arguably intrusive due to its mechanism of
recording of the user’s physical appearance (e.g. facial information), has also
been proposed in the literature, although very few made it to real-world contact
tracing. Some notable examples included the government approaches in India,
South Korea, and China (Preethika et al. 2020; Seetharaman 2020; Tabari et al.
2020; Vaughan 2020).

GPS based solution, which records the user’s precise position in latitude and
longitude, has also been attempted, with the most recent work by Raskar et al.
(Raskar et al. 2020), Wang et al. (Wang, Ding, and Xiong 2020), and the HaMagen
app by the Israeli government® (Sénmez and Elik 2020), which build the GPS
location trails of the registered users. Having access to this type of detailed
location coordination would make contact tracing much easier and more accu-
rate, should the privacy concern be properly addressed.

Magnetometer based approach was proposed in our previous work to track
passengers on the public transports (Nguyen, Watkins, and Luo 2017). The two
vital observations of this work were that the electric currents powering the rail
lines would alter the on-board magnetic field in such a way that people in
different carriages experience various non-deterministic measures; and the fact
that passengers must share the same journey between at least two consecutive
stations. Similar works utilising the magnetic field to detect colocation of the
users were reported in other environments, especially indoors with a high
degree of magnetic anomalies due to the building infrastructure (Jeong, Kuk,
and Kim 2019; Nguyen et al. 2019a).

WiFi based solution, which features dominantly in the indoor positioning
research, has become more attractive for epidemic tracking, thanks to the
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increasing number of indoor and outdoor public WiFi Access Points (APs). Our
previous work demonstrated that contact detection using pure WiFi RSS could
closely match the accuracy of GPS (used as a reference) in the city centre, when
at least 10 WiFi APs were around (Nguyen, Luo, and Watkins 2015). Similar
earlier works focused on the indoor WiFi APs to identify the proximity of the
users and the devices (Carlotto et al. 2008; Krumm and Hinckley 2004).

3. What is contact tracing, and why is it essential ?

This section introduces the core idea behind contact tracing and its roles in
fighting epidemic diseases.

3.1. What is contact tracing ?

In essence, contact tracing in an epidemic is the process of identifying all
potential victims, who have been in ‘close’ contact with an infected person,
and iteratively tracing the victims’ subsequent contacts in turn.

However, being in close proximity with a contagious individual does not
strictly guarantee in getting the virus, as there are other factors such as the
person’s health condition, the protective equipment (e.g. facial mask) being
used, the duration of exposure, the viral load, and many more. The overall
hypothesis, adopted by the World Health Organisation (WHO), is that
a ‘contact’ is registered when two persons, one of whom is positively tested
for Covid-19, are within 1 metre of each other, for at least 15 minutes.’

3.2. Why we need contact tracing ?

Most viral infection diseases (e.g. Covid-19, SARS, Swine-flu etc.) share the
common trait of being contagious during the incubation period (i.e. the time
elapsed between being exposed to the virus, and when the first symptoms are
shown) which may last for weeks without any apparent signs, during which the
infectious patients unknowingly spread the virus to other victims (Jiang, Rayner,
and Luo 2020; Leung 2020). Therefore, it is essential to pro-actively quarantine
all potential patients who have been in prolonged contact with the confirmed
virus host.

Contact tracing plays three critical roles in the fight against an epidemic. The
first role is early treatment, that is, helping exposed patients to seek timely
medical advices, hence boosting successful recovery chance. The second role is
transmission control, that is, informing potential victims to self-isolate, hence
stopping the chain of onward transmission. The third role is epidemiology
study, that is, gaining more insights (e.g. infectious origins, region, route,
gender, etc.) of the epidemic, enabling a better strategy to fight the disease in
the long term.
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3.3. Three forms of contact tracing

Conventionally, there are three mainstream forms of contact tracing.

¢ Interviews are perhaps the oldest, but are still widely used in present days,
where sick patients are requested to recall as many past contacts as they
can (Swanson et al. 2018). Such interviews may be completed in person, via
a form in the post, or on the internet. Nevertheless, human memory may
prove too imprecise for such critical task, not to mention that such inter-
views are time consuming and struggle to reach the wider population.

¢ Narrowcasting aims at a small-scale, concentrated part of the population
(e.g. a town, a building), where the health authorities broadcast an announce-
ment (e.g. on local radio, newspapers, bulletin boards, etc.) asking past
visitors to carry out viral tests, and informing others to avoid such areas
(Kaligotla, Yicesan, and Chick 2016). This approach allows the officials to
quickly control an epidemic hotspot. However, since narrowcasting was
meant for targeting a concentrated demographic region, it struggles to stay
effective when the epidemic spreads across different regions at large scale.

¢ Real-time detection addresses the issues of both approaches above, by
recording the disease contact between citizens and managing the epidemic’s
progress at it happens. Such detection has mostly been attempted via ambient
technology such as facial recognition (via Camera CCTV (Hou et al. 2017; Wang
et al.2017)), signal tracking (via the phone’s cellular signal (Aziz et al. 2016)) and
location monitoring (via GPS data (Chaix 2018; Olu et al. 2016; Stanley and
Granick 2020)). The common deterrent for all of these technologies is being
intrusive, which may lead to the reluctance to comply and adopt by the
citizens.

In the next section, we will introduce our approach using smartphone sensors
that improves on the above real-time detection approach.

4. Contact tracing with smartphones sensors

Having instigated the general concept of contact tracing, we may now introduce
our approach in smartphone sensors-based contact tracing. In doing so, we will
outline the idea, process, assumptions, and challenge facing our approach.

4.1. The smartphone-based contact tracing model

In principle, our approach fits in the ‘real-time detection’ category, as detailed
above. The complete process involves three steps (see Figure 2).
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o Registration. All participants download and start the app on their smart-
phones. It will register with the central server, then generate a unique,
temporary ID representing the phone, which will be constantly refreshed
after some period of time. The rationale for not using a permanent ID is to
make it challenging for snoopers to identify the participants.

* Contact detection. The app detects nearby phones running the same app,
and records such contacts locally on the phone. Both phones will exchange
their temporary, current IDs. Although not being the main focus of this
paper, the scanning interval should be configured to happen not too
frequently (e.g. at 30 seconds or 1 minute interval) to reduce the power
consumption and to avoid flooding the BLE and WiFi channels. The ratio-
nale for maintaining the contact list locally on each phone, and not
centrally on a server is to avoid constant data transmission, preventing
potential future data breach, and allowing the non-infectious participants
to remain anonymous.

¢ Infection report. There are two models for infection report, namely the
centralised model, and the decentralised model.

Step 1: Registration with server
o
w .

Step 2: Detecting nearby phones ___ ﬁ rff _

and exchanging contact ID
O
o
!Q 4)\
Step 3: Infection reporting ) \

r—c:ma.;d;od—e. ——————————————————— L
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Figure 2. The general steps of our proposed smartphone-based contact tracing procedure.
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In the centralised model, when a participant is diagnosed positive, his/her
app reports the news to a central server, and releasing the locally stored contact
list so far. It is clear that such infectious patients must reveal their identity to the
server at this stage. The server subsequently informs all contacts from the
infected user’s list. This model is pioneered by the Pan-European Privacy-
Preserving Proximity Tracing (PEPP-PT) group,® which promotes standardised
approaches (e.g. ROBust and privacy — presERving proximity Tracing protocol -
ROBERT (Castelluccia et al. 2020)) for strong European data privacy in accessing
the user smartphone data. Its early adopters included the German and Italian
governments (Analytica 2020).

In the decentralised model, the diagnosed participant reports only his/her
positive status to the server. S/he still needs to reveal the identity at this point.
The server then updates the anonymised public list of infected users, which all
participants should frequently check to verify their own status. This model is
championed by Google and Apple (i.e. the Google/Apple Exposure Notification
(GAEN) API”), and the Decentralised Privacy-Preserving Proximity Tracing (DP-3T)
initiative (Hubaux 2020).

The benefit of the centralised setting is that the server's owner (e.g. govern-
ment or health entities) may have a good overview picture of the epidemic’s
state, and all infected users may remain anonymous amongst other users (except
to the server, and in the rare event of a participant being in contact with just
a single user, who is later diagnosed positive). In the opposite, the benefit of the
decentralised setting is that an infected user needs not expose his/her entire
contact list to the server, giving the participants more control of their own data.

It is worth noting that we will focus mostly on detecting a contact between
two nearby smartphones (i.e. Step 2 in Figure 2). As such, other important
properties such as secured protocol to exchange information, third-party
trusted server, user privacy, etc. are beyond the scope of this paper.

4.2. Our assumptions

In order for smartphones based contact tracing to be effective and reliable, the
following assumptions are made:

¢ Substantial number of participants. In common with any other technol-
ogies, the success of this approach relies first and foremost to the will-
ingness of the wider population to engage. The first pre-requisite is most
citizens download the app to their smartphones. This assumption could be
satisfied as many countries start to raise their citizen’s awareness of the
disease’s seriousness. It may soon be the pre-condition to relax lock-downs
and allow people to better protect themselves.

¢ Carrying smartphones. As this approach registers the human contact via
the smartphones, it is vital that the devices are present along with the
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users when such contact happens. This assumption is mostly satisfied as
most (if not all) smartphone owners carry it with them whenever they are
outdoors.

¢ Accurate feedback. When a user is confirmed positive, s’/he must inform
the app. Subsequently, ordinary users must not falsify such result. This
assumption could be satisfied by official confirmation from the medical
test results.

It goes without saying that the above assumptions would be made easier,
should the proposed technology be shown to be effective with few false
positives, and thus gaining trust amongst the users, in which this paper aims
to address.

4.3. Detecting a contact between two smartphones

Correctly detecting a contact between two nearby smartphones is the key
mechanism for this approach. We emphasise that the contact is detected in
the proximity based relative position (i.e. whether the phones are close or not?),
and not the absolute coordination of the phones, which may be too sensitive to
privacy issues. The detection happens in real time, and only a binary (yes/no)
decision, along with the nearby phones’ temporary ID (as explained in Section
4.1) are recorded locally on the phone.

There are two approaches to register such contacts with smartphone sensors
(see Figure 3).

e Shared environment comparison. When two phones are nearby, their
respective sensor measures of the current environment should be similar.

¢ Appearance sensing. Some sensors have the ability to tell the existence of
the same sensor type in other nearby phones.

4.4. Assessing the feasibility of employing smartphone sensors

Currently, there are about 14 sensors in modern smartphones, with different
functionalities. Table 2 compares some of their well-documented properties
which are useful for contact tracing, namely the permission, power usage, and
sampling rate.

¢ Sensor permission. Permission wise, each sensor has different permission
levels, based on how Android deems their threat to the user’'s privacy
(Mehrnezhad and Toreini 2019). In short, there are three relevant types of

Android sensor permission for our purpose.
a) No permission. No permission is needed to declare anywhere within
the app or during run-time. Sensors in this group can silently access the
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@
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Figure 3. The two approaches for contact tracing with smartphone sensors. Two nearby phones
can either sense their appearance and work out the relative distance; or compare the ambient
environment they are sharing.

sensors as they wish, which includes the accelerometer, gyroscope,
magnetometer, ambient light, and proximity.

b) Normal permission. These sensors pose little risk to the user’s privacy.
As such, they only need to be declared in the manifest file, and Android
will ask the user just once during installation. Once agreed, the user has
no way to refuse access in future runs.

c) Dangerous permission. These sensors access high privacy user data
(e.g. contact information, location data) or may affect the operation of
other apps. For this group of sensors, the app must display a pop-up
window explicitly asking the user for permission to access such infor-
mation, when the app is first launched. Even after accepted, the user
has total control to revoke such permission in future runs.

Generally speaking, for the contact tracing purpose, there is a trade-off
between usability and privacy. Ideally, we would prefer sensors in the ‘no
permission’ or ‘normal permission” groups as they deliver seamless user experi-
ence (e.g. the app works in a simple click without convoluted pop-up messages).
Nevertheless, the user should be made clear that such sensors (e.g. Bluetooth,
WiFi) have the potential to infer their locations.
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Table 2. Summary of the relevant properties of 14 common sensors in most smartphones,
sorted in alphabetical order. The data are surveyed from the LG G7 ThinQ phone.

Measure Sampling Power  Permission

Sensor unit rate (max) usage type Notes

Accelerometer m/s* 500 Hz low none reporting the changing rate of the
phone’s velocity.

Ambient light  Ix 4 Hz low none reporting the magnitude of the
surrounding light.

Barometer hPa 120 Hz low none reporting the surrounding
atmosphere’s pressure.

Bluetooth dBm various* medium dangerous exchanging information with nearby
Bluetooth-enabled devices

Camera image-form 60 Hz medium dangerous generating an image of the
surroundings.

Cellular dBm various* medium dangerous exchanging information with nearby
phone towers.

Fingerprint image-form 0.5 Hz low dangerous generating an image of the human
finger.

GPS s, m various* high dangerous reporting the satellite signals, clock
timestamp, and status.

Gyroscope rad/s 500 Hz low none reporting the changing rate of the
phone’s rotational motion.

Magnetometer uT 200 Hz low none reporting the magnitude of the
surrounding magnetic field.

Microphone dB 48 kHz medium dangerous reporting the magnitude and the raw
surrounding acoustic noise.

NFC N/A 1Hz low normal exchanging information with nearby
RFID tags within 10 cm.

Proximity cm 4 Hz low none reporting the distance to the nearest

object within 10 cm. Some
proximity sensors only report
a binary near/far result

WiFi dBm 0.03 Hz high dangerous exchanging information with nearby
WiFi-enabled devices

*The phone will continue scanning for nearby Bluetooth devices, GPS satellites and Cellular towers, updating the
results as they come in, until the process is interrupted.

It is worth noting that Android do not strictly associate each sensor to
a permission type (i.e. a sensor may need several permissions, and
a permission type may be shared amongst different sensors). For example,
when an app needs Bluetooth access, it must specify BLUETOOTH permission
(for Bluetooth communications), and BLUETOOTH_ADMIN permission (for
Bluetooth settings) in the ‘Normal permission’ group; as well as the ACCESS_
FINE_LOCATION permission (to initiate a scan) in the ‘Dangerous permission’
group, because Android consider that nearby Bluetooth devices information
including the signal strength may be used to indirectly infer the user location.

o Power consumption. This metric reports the overall energy consumed by
the app. In the context of contact tracing, this is an important factor to
consider, since it prolongs the battery life between charging cycles, thus
allowing more opportunities to detect potential disease contacts, as well as
allowing the user to continue with other routines on the phone. An inter-
esting correlation we spotted is that most no permission and normal
permission sensors consume little power (see Table 2).
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¢ Sampling rate. This metric is the sensor’s frequency in providing the latest
measure. High sampling rate sensors are desirable to discover the smallest
changes in the environment. Generally speaking, motion related sensors
(i.e. accelerometer, gyroscope) have higher frequency than others to detect
the quick changes in phone motions. At the other end of the spectrum are
Bluetooth, GPS, and Cellular, which will keep scanning and reporting the
results as they become available, until the process is interrupted.

When it comes to picking which sensors to use, we impose a strong criterion
that any selected sensor must not directly reveal the smartphone’s position, for
our sole purpose of proximity tracking, and to avoid potential information
misuse. This rules out GPS (which directly yields the longitude and latitude),
and Cellular (whose cell tower location database is publicly available®). The
ambient light sensor which measures the lighting intensity, is an interesting
source of information. Yet, its readings are too volatile under different phone’s
angles. On the same note, the camera, fingerprint, NFC, and time-of-flight’s
usage were rather specific, and do not appear to be useful for our contact
tracing purpose at this stage.

Last but not least, as mentioned in the previous section, only the nearby
phones’ IDs are stored locally on the smartphones, and not the detailed sensor
data.

4.4.1. Bluetooth for proximity detection

On the smartphones, Bluetooth technology, with its latest iteration called
Bluetooth Low Energy (BLE), was intended to connect the phone to small
peripherals (e.g. headphone, gamepad, etc.) in short distance (typically no
more than 10 metres, and ideally within 2-3 metres), which is a great fit for
close contact detection.

The detection process using BLE works as follows. First and foremost, one
phone must act in the ‘Central’ role, and the other phone plays the ‘Peripheral’
role. The peripheral phone will constantly send out unsolicited messages
(including its name, MAC address, etc.) on the 40 BLE channels to inform its
existence (Contreras, Castro, and de la Torre 2017; De Blasio et al. 2017; Faragher
and Harle 2015; Kalbandhe and Patil 2016). The central phone, at any time of
preference, will initiate a scan to look for those peripheral phones. Secondly,
both phones may establish a BLE connection to exchange information. Ideally,
the smartphones will alternate between these two roles to avoid the situation
where everyone is listening while no-one is broadcasting, and vice-versa.

It is worth noting that, as a BLE scan will also reveal the received signal
strength (RSS), which roughly indicates how far away the nearby peripheral
phones are, we could estimate the distance using the well-known inverse
square law of Physics, that is, the signal intensity is inversely proportional to
the square of the distance from a signal transmitter (Goldsmith 2005).
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PoweI—BLE_RSS)

d= 10( T0+n (1

where d is the estimated distance, Power is the RSS measured at 1 metre,
n is the signal propagation constant (e.g. n = 2 for free-space path loss), BLE_
RSS is the RSS received by the central phone. Although there are other
distance models, without knowing how the BLE signal propagates (especially
challenging indoors), we opted for this simple form of free-space path loss
model.

Nevertheless, there are two challenges with BLE. Firstly, BLE wireless signal
does easily penetrate walls and furniture, which contributes to the false positive
contact detection (i.e. two neighbours separated by a thick wall may be regis-
tered as a contact). Secondly, the correlation between the RSS and the distance
is not strictly linear, because of the signal attenuation (i.e. without an unob-
structed line-of-sight between the two phones, the signal waves are strength-
ened or weakened as they travel in different directions in the air), and the BLE
frequency hopping technique (i.e. the phone frequently switches between the
BLE channels to avoid signal collision, which inadvertently impacts the receiving
signal at the other end).

In short, we will only employ BLE as a rough indicator to discover nearby
phones (which could be anywhere up to 30 metres in the vicinity), and to
kick-start the upcoming procedures involving other sensors. We will later
demonstrate empirically in detail how frequency hopping may affect the
accuracy of BLE in estimating the relative distance between the phones in
Section 5.

4.4.2. WiFi for distance measuring
On the smartphones, WiFi technology was originally intended to connect the
phone to the Access Points (APs) for internet access. Recently, the WiFi Direct
peer-to-peer protocol enables two WiFi-enabled devices to communicate
directly without an AP, over much longer distance (up to 50 metres indoors)
than Bluetooth (Khan et al. 2017), in which the smartphones will negotiate
directly between themselves to automatically assign the central and peripheral
role.

From the contact detection’s viewpoint, WiFi technology may be employed
for environment comparison, appearance sensing, as well as distance measur-
ing purposes.

e For environment comparison. The observation is that most modern
buildings and public venues have plenty of WiFi APs to provide internet
access to residents and customers. As such, two smartphones with a similar
set of observed APs are potentially nearby.

¢ For appearance sensing and distance measuring. This is performed in
a similar fashion as with BLE.



JOURNAL OF LOCATION BASED SERVICES . 105

However, there are five major challenges for employing WiFi. Firstly, since
Android 9, all apps may only initiate a scan at most four times every 2 minutes
(about once every 30 seconds),” whilst there is no scanning restriction for
Bluetooth.'® Secondly, the current implementation of WiFi Direct on Android
does not expose the RSS of the peer devices, which means the phone needs to
be set up as a WiFi hotspot for its RSS to be harvested via the usual WiFi scan.
Thirdly, the glaring weakness of WiFi technology is its long broadcasting dis-
tance of up to 50 metres. As such, smartphones on different floors, or even
separate buildings may still see each other, or observe the same set of WiFi APs,
which invalidates the environment comparison approach. Fourthly, WiFi con-
sumes much higher battery than BLE and other sensors. Lastly, WiFi signals do
suffer from the same signal multi-path problem as BLE.

Taking into account these concerns, WiFi should only be employed to com-
plement BLE. In particular, it should only be called into action when a potential
contact has been confirmed by BLE. Given the WiFi RSS is considerably more
stable (i.e. no frequency hopping as in BLE), its distance conversion may be more
accurately represented (to be empirically assessed in Section 5).

Without loss of generality, given the WiFi RSS sequence (which reflects the
distance) between the two smartphones W = (w,, ..., wy), recorded over a time
window (e.g. 15 minutes based on the WHO recommended infectious
duration'"), where w; (1 < i < N) is the WiFi RSS at time point i, we employed
the free-space path loss model, described in Section 4.4.1, to convert the RSS
into a distance estimate. The mean value of all estimates within the entire time
window will decide if the two phones were within the infection range (e.g. 1
metre based on the WHO guideline).

4.4.3. Microphone for proximity detection

Sound is generated by the vibrations of air particles, which are then picked up
by the human ear and the smartphone’s microphone (Murakami et al. 2018). For
contact detection, sound may be leveraged for both the appearance sensing
and the distance measuring purposes as follows (although it is possible to
encode information within those sounds, yet, for our contact tracing purpose,
we only need to detect the appearance and the rough distance measure).

For appearance sensing, one smartphone will play the peripheral role by
emitting a chirp via its built-in loud speaker. The other phones which act in the
central role will pick up those sounds by their built-in microphone, and response
with their own chirps to make contact, which indicates that they are in close
proximity.

For distance measuring, there are two options. The first one is based on the
concept of time difference of arrival. The second one is based on sound
amplitude.
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o Time difference of arrival (TDoA). With this approach, the distance
between the two phones is inferred by timing the moment the chirp was
sent by one phone, until it is received by the other end. If the clock of both
phones is perfectly synchronised, the distance is simply calculated as
distance = speed of sound * elapsed time, with speed of sound is a constant
(e.g. 343 m/s at 23°C room temperature) (Yavuz 2015).

The rationale of this approach is that acoustic signal travels at a much
slower velocity (i.e. 343 m/s), compared to WiFi and Bluetooth signals
which travel at the speed of light (i.e. 300,000 km/s). Therefore, it is more
feasible to time and compute such distance.

However, there are several challenges. Firstly, it is unlikely that various
smartphones would share the same clock timing. Secondly, all Android
sound packages (i.e. SoundPool, AudioTrack and OpenSL ES) have consid-
erably non-deterministic latency (i.e. there are unpredictable delay from
the moment the audio play command was issued, until the actual sound
was sent out by the built-in speaker), in the region of [180-300 ms]. Given
that sound travels at 343 m/s, an average of 200 ms error in TDoA estima-
tion will lead to more than 70 metres error in ranging estimation, which is
simply not usable for our purpose.

¢ Sound amplitude. This approach relies on the same concept as in BLE and
WiFi RSS ranging, that is, using sound amplitude as distance indicator. The
central phone plays a chirp. As this chirp travels in the air, it loses pressure
for which the receiving phone may use to work out the distance to the
central phone.

The final task is designing a chirp signal to be received reliably within short
distance by other nearby smartphones, for which there are three criteria to
consider.

¢ Frequency. The frequency (in Hz) is the speed of vibration which
determines the sound pitch (e.g. female voice is perceived to have
higher pitch than male one). Distance wise, low frequency sound travels
further than high frequency one, as there is less energy being lost in the
process. As such, we would prefer high frequency chirp for short dis-
tance contact detection. Nevertheless, high frequency chirp tends to
attenuate more heavily than low frequency one, because of higher
viscosity caused by many peaks pressuring against the air (Hoppe,
Hoflinger, and Reindl 2012). The major constraint is that, although our
test phones are capable of recording very high frequency acoustic
sound, streamlined smartphone microphones may be limited to lower
frequencies in the human audible range (i.e. 20 Hz to 20 kHz), which was
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primarily what they were designed for. As such, our chirp signal should
be within this range.

o Amplitude. The amplitude (in dB) is the size of the vibration which deter-
mines the loudness of the chirp. A high amplitude means louder sound,
which in turns, translates to longer travelling distance. For contact detec-
tion, we would prefer low amplitude sound for quiet operation as well as
limiting the distance to within the short contagion range.

¢ Duration. The duration (in ms) is the length of the vibration. For contact
detection, the chirp duration should be short, as multiple chirps may be
sent simultaneously by other nearby phones, and potentially confuse the
receiving ends.

Taking all of these constraints into consideration, an ideal chirp for contact
tracing purpose should have a frequency within 2 kHz to 6 kHz range (as most
acoustic sounds start to attenuate greatly above 8 kHz (Peng et al. 2007)), with
an amplitude of about 20 dB (still within the recording range of all smartphone’s
microphones, yet is perceived as just a small whisper for the human ear), and
a 50 ms duration (the ideal length to avoid collision with other chirps) (Lazik and
Rowe 2012). Lastly, each smartphone should use a different frequency when
communicating to better differentiate with other nearby phones.'?

There are two advantages of sound based approach. Firstly, while radio
waves propagate seamlessly through space, sound waves require a material
medium (e.g. water, air) to convey from one place to another, which does
not easily penetrate thick walls, and furniture. Secondly, we may manipulate
the frequency and loudness properties of the chirp, which indirectly control
the travelling distance, whereas although theoretically possible to do the
same with BLE, there is no Android API to modify the BLE sensor’s sensitivity
at the time of writing. Hence, sound is a great fit for contact tracing.

Nevertheless, there are three challenges for employing sound. Firstly, it does
suffer from the same multi-path issue as in BLE and WiFi, in which the acoustic
signals reach the receiving microphone in different paths, due to reverberation.
Secondly, the sound propagation speed does vary according to different tem-
peratures and humidity (this issue may be negligible in real practice, as the
distance between the phones is rather short for our purpose). Lastly, while BLE
and WiFi encode their unique sender ID within the signal, we need to design
such handshaking process from scratch for sound. Our solution is leveraging BLE
signal to make contact between the two smartphones first, before transmitting
the chirp.

4.4.4. Magnetometer for ambient magnetic field comparison

Magnetism exists everywhere on Earth, which is caused by the movements of
molten metal at the Earth’s core. This natural magnetic field is strongly per-
turbed by ferrous metal from most building’s materials (Kim and Kong 2016;



108 K. A. NGUYEN ET AL.

Kim, Seo, and Baek 2017; Storms 2019). Therefore, small indoor areas within the
building may report different magnetic signatures, which is an opportunity for
matching smartphones contact.

The magnetometer measures the ambient magnetic field strength around
the phone in three-dimensional space. However, as the sensor is fixed within the
phone body, its coordinates align with the phone’s body frame. As such, the
orientation of the phone varies the magnetometer reading, even in the same
spot. This challenge may be addressed by ignoring the direction of the mag-
netic field vector, and computing the total scalar magnitude m as follows
(Nguyen, Watkins, and Luo 2017).

m =, /m2+m?+ m? (2)

where my, m,, and m, in (uT) are the magnetic field strength along the x, y and
z axis respectively.

Without loss of generality, given Alice’s magnetometer measures A = (m;,
...,my) and Bob’s magnetometer measures B = (my, ..., my), where N and M may
be different due to various sensor’'s sampling rates. We will apply the method
described in (Nguyen, Watkins, and Luo 2017) using Dynamic Time Warping
(DTW) which was designed to compare the magnetic sequences of different
length, and to handle the various sensitivities from different sensor vendors (i.e.
a more sensitive sensor may return higher reading values). In essence, DTW finds
the optimal warped path between the two sequences by building an N-by-M
matrix, in which [i", j"] is the distance between measures m; and m’ calculated
as follows (Nguyen et al. 2019b).

N 2
d(m;,m’;) = (m; - mj) (3)
The optimal warped path of length k: w(1, 1), ..., w(n, m) between the two

sequences, that minimises the warping cost is computed as follows (Nguyen
et al. 2019b).

w(n,m) =d(m;,m’;) + minq w(i—1,j—1) (4)
w(i,j—1)

with (1 <i<N,1<j<M).

At the end, the DTW score is computed as w(n, m) divided by the length
of the warped path. If the computed score of the two magnetic sequences
is below the threshold, the two phones are deemed to be in close proximity
(see Section 5.5 for the empirical experiments with the magnetic field
threshold).
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4.4.5. Barometer for air comparison

As most viral diseases are airborne, having the ability to detect if two persons
are breathing the same air is profoundly valuable. Regrettably, all sensors
discussed so far inherit the same weakness from the wireless signal property,
that is, electromagnetic and sound wave can penetrate walls. As such, two
persons fully segregated by a thick, concrete wall may still be detected by
BLE, WiFi, or sound signal, which results in a false positive being registered.

The barometer which measures the ambient air pressure around the phone,
may offer a solution for this challenge. The observation is that, the readings are
varied by the air weight in the atmosphere, caused by different altitudes (e.g. on
different building floors), or by the winds (e.g. a closed indoor space has
different measures from an open outdoor one) (Kim, Kim, and Han 2017; Li,
Harvey, and Gallagher 2013; Nii et al. 2017).

Nevertheless, if the phone is kept in a tight pocket, handbag, etc., the air
measures are potentially different, although the two persons are in the same
place. This challenge may be addressed with the help of the proximity sensor,
which was originally designed to measure the distance to the nearest object
facing the phone screen (i.e. it is intended to detect the side of the human face
to switch off the screen while answering a call). By using the proximity sensor,
the system may detect whether the phone is left in tight space or in the open to
trigger the barometer reading.

Without loss of generality, given the barometer measure sequence from two
smartphones, we employed the same DTW approach as in the above Section
4.4.4, to work out a score reflecting the difference between the two barometer
sequences. If the score is below the threshold, the two phones are deemed to be
in close proximity, from the barometer’s perspective (see Section 5.5 for the
empirical experiments with the air pressure threshold).

4.5. Fusion of sensors information

Having studied the individual role of each sensor, we may now present our
strategy to combine the above six sensors together. The system prioritises the
appearance sensing of other nearby phones first, then moving on to measure
the relative distance between them, and finally comparing the shared environ-
ment to reduce the number of false positives (see Figure 4 and Table 3). The
detailed steps are as follows.

Appearance sensing

Step 1: The app periodically scans for nearby smartphones using the BLE
signal. The rationale for using BLE as the primary sensor for appearance
sensing, although other sensors (i.e. WiFi, microphone) are capable of the
same function, is two-folds. Broadcasting distance wise, WiFi’s range would
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Figure 4. The flowchart of our contact tracing process which involves different smartphone
sensors at each stage. At the end of each of the three main stages, an output regarding the
phone’s visibility, the relative distance estimate, and the environment difference are produced
respectively.

Table 3. Overview of the role of the smartphones sensors employed by our system.

Sensor Appearance sensing Distance measuring Environment comparison
Barometer® N/A N/A Shared air

Bluetooth Coarse-grained N/A N/A

Magnetometer N/A N/A Ambient magnetism
Microphone Fine-grained Fine-grained N/A

WiFi N/A Medium-grained N/A

*The proximity sensor is used as a trigger for barometer.

be too long for consideration (with visibility of up to 50 metres away);
acoustic sound, despite capable of adjusting its range, may not be reliable
in noisy environment; whereas BLE offers the most compromised option for
this matter. Power consumption wise, BLE consumes the least amount of
energy amongst these sensors. This step is repeated until a smartphone is
discovered.

Step 2: When a nearby phone is found by BLE, its range could be anywhere
within 30 metres, including being on the other side of a thick wall or furniture.
As such, this step attempts to further reduce these false positives with sound
sensing. Firstly, the app does a preliminary check of the ambient noise. Since our
chirps have an amplitude of around 20 dB, if the background noise is above this
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threshold, the system skips to Step 3, otherwise it performs a chirp scanning to
see if the other phone can be heard (sound does not penetrate walls as easily as
WiFi and BLE, hence there is a chance the phones are truly close).

Distance measuring

Step 3: If the environment is too noisy, the system computes the WiFi-based
distance between the phones (although WiFi has a theoretical longer range than
BLE, it does not use frequency hopping, hence resulting in much stable RSS).
Otherwise, if the nearby phone can be reached by the chirp, the system computes
the sound-based distance, then proceeds to compute the WiFi-based distance as
well. In the end, those two distances are averaged for a better distance estimate.

Environment comparison

Step 4: If both smartphones are in open space (as verified by the proximity sensor),
the system compares their ambient air pressure, to assess whether the respective
phone owners are breathing the same air (which is critical for airborne diseases).
Otherwise, the system just compares the ambient magnetic field around the
phones.

The above processes may be viewed as in an on-line setting, where sensor
measures arrive in real time, and the system should decide on three output
metrics, that are (in decreasing priority order), whether the two smartphones are
close, what is the relative distance between them, and if they are sharing the same
environment. Ideally, for a contact between the two phones to be registered, the
app should detect that they are close (via BLE and/or sound), and their estimated
distance is less than 1 metre according to WHO'’s guidance on infection (via WiFi
and/or sound), and their shared environment is similar (via barometer and/or
magnetometer). The final decision for each metric will be made over a 15 minute
window (which is the duration to be infected according to the WHO's guidance),
where the appearance can be a simple majority vote (e.g. if there are 10 samples in
this period, in which over 50% of them indicate a match, then the final decision is
that they are close), the distance estimate and the environment sharing are an
average of individual measures over this period window.

4.6. Challenges

Although the aforementioned sensors are undoubtedly useful for contact tracing, it
is worth remembering that all of them were primarily designed for other purposesin
mind. As such, the following challenges should be taken into account.

¢ Heterogeneous sensors. Smartphones sensors come in different shapes
and forms according to their makers, which may impact their sensitivities
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to the environment (e.g. some phones may receive a strong WiFi or BLE
signal from faraway thanks to a bigger antenna, whereas others need to be
much closer). This challenge specifically impacts the environment observa-
tion approach, as one smartphone may view the world around differently
from another phone.

* Noisy measures. Smartphones sensors are miniaturised devices being
packed tightly in a small phone body, whose measures are particularly
noisy, not to mention the interference from other sources (e.g. the 2.4 GHz
band is overcrowded with devices such as PC, laptop, microwave, radio,
etc.). This challenge impacts the reliability of the sensors, as a sudden
electronic noise may be misclassified as a true measure.

¢ Signal multi-path. In a convoluted environment, there is rarely an unob-
structed line-of-sight between the two smartphones. As such, the radio and
sound waves travel in unexpected fashions in the air, which results in
various receiving signals at the other end. This challenge strongly impacts
the true distance estimate which is heavily based on the RSS. We address
this concern by measuring several signals in the same place (i.e. increasing
the probability of observing the good signal), and combining signals from
different sensors. It is worth noting that as people approach closer to each
other, there is less likely an obstacle between them, which lessens the
impact of this challenge.

5. Empirical experiments

Having presented our contact tracing proposal, we will now assess its feasibility
and performance in various experiments. In doing so, we aim to address the
following research questions.

® Appearance sensing wise, what is the typical indoor and outdoor detection
range of BLE and sound ?

¢ Relative distance wise, what is the offset between the estimated sound
based, and WiFi based distance measure and the true distance ?

e Environment comparison wise, what is the feasibility of using air pressure
and magnetic field ?

e Overall contact detection wise, what is the accuracy (in terms of the
number of false positives) of our approach, compared to pure BLE based
system ?

5.1. Testbeds

Three realistic testbeds, representing both indoor and outdoor environment,
were purposely selected to examine the feasibility and performance of our
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approach (see Figure 5). The first testbed contains a five-room office. The second
testbed contains the communal areas of a 14-storey building. The third testbed
is an open-air parking garage.

Sample wise, for each testbed, we record 80 test instances, where each
instance contains a pair of samples from two test phones at two different
locations. In total, there are 240 test instances across the 3 testbeds. Distance
wise, 60 of these instances are within 1 metre (i.e. the contagion range advised
by WHO), another 60 of them are within 1 metre and 2 metres (i.e. the contagion
range adopted by most European countries), 40 of them are within 2 metres and
3 metres (i.e. the false positive buffer zone), and the remaining 80 are some-
where between 3 metres and 30 metres (see Table 4).

Ambient environment wise, the five-room office represents a typical indoor
condition, with plenty of electric appliances (e.g. laptops, PCs, cameras) operat-
ing in the background, which may impact the wireless signal between the
phones. The 14-storey building allowed our approach to be verified on different
floor levels. The parking garage represents an ideal environment with wide
open space containing unobstructed line-of-sight between the devices for
minimal signal path loss.

11 metres 68 metres

g

(a) The five-room office. There is plenty of electric appliances (b) The ground floor of the 14-storey building. Only the
lying around (not shown here). communal areas (the shaded areas) were used.

6.3 metres
42 metres

Elevator

87.5 metres

37.5 metres

(c) The parking garage. The shaded areas are the parking lots, which were
mostly empty on the day.

Figure 5. The floor plans of the three testbeds.
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Table 4. Overview of the distribution of test samples. More emphasis
was given to samples within 3 metres as they are within the infection
range of our interest.

Distance between phones Indoor samples Outdoor samples
(0-1) metre 40 20
(1-2) metres 40 20
(2-3) metres 20 20
(3-30) metres 20 60

5.2. Test devices and subjects

Three smartphones were selected for testing, namely the LG G7 ThinQ, Samsung
Galaxy S8, and Lenovo Phab 2 Pro (from now on, they will be simply referred to
as LG, Samsung, and Lenovo phones). They were chosen to represent a variety
of smartphones in the past 5 years, as well as covering different sensors
manufacturers and Android operating systems (see Table 5). The LG phone
will play the role as the central phone, whereas the Samsung and Lenovo
phones will play the peripheral role.

Using the above test devices, the sensor data were collected by two people at
240 test locations (as described in Section 5.1), during daytime where there
were other people around in the same premise, over the period of two months.
During the experiments, the phones were either held in the user’s hand or left in
the pocket. For each test instance, we collected the sensor measures over
5 minutes (although a true positive contact is registered when two phones
are within 1 metre for 15 minutes, according to the WHO's Covid-19 guidelines,
yet, we relax the measuring time to speed up the experiments).

5.3. Appearance sensing analysis

The purpose of the first experiment is assessing the visibility of BLE and sound,
with varying distance between the two smartphones and the environment
settings. For each of the 240 test locations, one smartphone constantly looks
for the other during a fixed 1-minute period, keeping a record of each scan. We
used the same pair of LG, Samsung phones in this experiment for consistency.

For BLE, the result revealed three interesting trends (see Figure 6). Firstly, the
further the distance between of the two phones was, the lower the

Table 5. Overview of the three smartphones used to verify our approach.

Phone model Year  Android WiFi/BLE =~ Magneto-  Microphone Barometer  Proximity
released oS vendor meter vendor vendor vendor
vendor
LG G7 ThinQ 2018 9.0 Qualcomm Asahi Kasei LG LG LG
Samsung 2017 7.0 Murata Asahi Kasei  Knowles Samsung Samsung
Galaxy S8

Lenovo Phab 2 2016 6.0.1  Qualcomm Bosch Lenovo Lenovo Liteon
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discoverability rate was. At 20 metres indoors, the detection number was just 16,
compared to 124 of that when two phones were 1 metre apart. Secondly, the
indoor visibility was noticeably poorer than outdoors (which is understandable
with almost zero line-of-sight between the phones). Thirdly, they may still see
each other at 20 metres apart indoors, and 30 metres outdoors. The third result
has a strong implication for contact tracing, as these detections are clearly not in
the contagion range, and may trigger a false positive.

For sound, the appearance characteristics were similar to that of BLE, in which
the further away the distance was, the less likely it could be heard. Yet, there was
one clear distinction, that was, far fewer test instances beyond 2 metres can be
heard with our chirp than with BLE (e.g. out of 20 test instances with more than
3 metres distance, only 8 of them could be reached with sound) (see Figure 7).

Since both BLE and sound may penetrate walls and furniture, their visibility
was tested on different floor levels, with about 3 metre ceiling height.
Interestingly, we got no sound feedback beyond the first floor, whereas BLE
signal could penetrate up to the 6" floor (see Figure 8).

We do not report the scanning frequency for WiFi and sound, because of the
WiFi scanning restriction on Android (at most 4 scans every 2 minutes), and the
design of our chirp broadcasting interval (to avoid sound collision), as discussed
in detail in Sections 4.4.2 and 4.4.3.

In summary, the results in this section reveal that BLE-only-based systems may
score plenty more false positives due to its high visibility of up to 20 metres indoors
and 30 metres outdoors. Sound, on the other hand, with much shorter travelling
range, may offer an extra layer of appearance sensing information on top of BLE.
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Figure 6. The scanning frequency of BLE, reported at 240 test locations. At each location, the
central LG phone scans for 60 seconds and reports the result. In general, more measures were
available outdoors than indoors, and at shorter distances.
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Figure 7. The hearing sensitivity of sound indoors and outdoors with respect to different
distances between the two smartphones. The shaded areas represent test locations without any
BLE or sound signal. Overall, the sensitivity decreases as the distance increases.
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Figure 8. The visibility of BLE and sound on 13 floor levels, with 10 test locations per floor. The
central LG phone was placed on the ground floor, while the Samsung phone keeps climbing up.
No sound contact could be made beyond the 1*' floor, where BLE can still be heard on the 6"
floor. The shaded areas represent test locations without any BLE or sound signal.

5.4. Relative distance analysis

This section assesses the feasibility and accuracy of the WiFi-based and sound-
based distance estimate.

Since the only output we have, is just a simple number in the form of the WiFi
RSS and sound pressure, we will assess how reliable this measure is, in the most
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ideal condition. As such, we performed the experiment in the open-air parking
garage, where the LG phone was fixed in one place, while the Lenovo phone
moved away from it in a straight line. At every one metre along the way, 10 WiFi
RSS and sound signal were taken. Theoretically, we would expect a steady
decrease of such measures following the free-space path loss model, with
respect to increasing distance.

For WiFi, the results revealed three surprising characteristics (see Figure 9).
Firstly, even when both phones are static, with a clear line-of-sight between
them and almost no interference from the environment (i.e. the signal may still
bounce off the floor, nevertheless), the WiFi RSS still varies in the same spot.
Secondly, strong signals (within 3 metres) and weak signals (beyond 20 metres)
tends to be more stable than medium signals (from 3 metres to 20 metres).
A plausible explanation is that at short distance the signal does not take long to
travel, whereas by the time it travels 20 metres, it has lost most of its energy.
Medium distance is the central spot for signal attenuation. Thirdly, at the same
position, BLE RSS fluctuates significantly more than WiFi's, due to frequency
hopping.

For sound, the result revealed a remarkably consistent measure with very
little variation in this ideal outdoor setting. This ascertains its usefulness in
estimating the relative distance between the smart phones.

Having understood the baseline expectation of BLE, WiFi and sound propa-
gation characteristic, we may now assess their estimated distance’s accuracy
with our 240 test instances, both indoors and outdoors. For each test location,
the true distance is the shortest straight line connecting the two smartphones
discounting any walls and furniture in-between, the estimated WiFi and sound
based distances are obtained from the free-space path loss model (as discussed
in Sections 4.4.2 and 4.4.3), the result is an average of 10 sound measures and 4
WiFi measures (the Android cap for 2 minute scan).

The result revealed the challenging impact of signal multi-path, where
both WiFi based and sound based approaches produced high distance
estimate error (see Figure 10). In particular, sound based approach achieved
less than 2 metre distance error 90% of the time, whereas WiFi based
approach could only manage 6.5 metre distance error 90% chance, demon-
strated by the Cumulative Distribution Function (CDF) plot. The confidence
bound of sound based result, computed by the Kaplan-Meier estimator
(Goel, Khanna, and Kishore 2010), was also noticeably tighter than WiFi
based one.

However, it was surprising that, when focusing on just indoor test locations
within 3 metres, where there are furniture, walls between the smartphones, WiFi
based estimated distances were slightly more accurate than sound one (see
Figure 11). This result suggests that a combination of WiFi and sound may
produce a better distance estimate.
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Figure 9. Comparison of the WiFi, BLE, and sound signal propagation in an ideal open-air
setting with a clear line-of-sight between the two smartphones. The sound signals are scaled by
the right side y-axis. Acoustic sound and WiFi signals have the least amount of variations,
compared to BLE, at the same location.

5.5. Environment comparison analysis

This section assesses the feasibility and accuracy of using the barometer and
magnetometer to determine whether the two smartphones are sharing the
same environment, in particular, ‘breathing’ the same air, which is critical for
airborne infection.

Regarding air pressure, we assess its feasibility in close contact detection by
experimenting its measure across the vertical and horizontal spaces.

Vertical space wise, we collect 10 barometer readings with the LG and
Samsung phones in the 14 floor building, with about 3 metre ceiling height
separating each floor. The result reveals three useful information (see Figure 12a).
Firstly, the average air pressure strictly decreases as the altitude increases.
Secondly, there was a clear measure gap of around 0.43 hPa between each
floor. Thirdly, the reading variations are particularly low (i.e. rather stable) per
floor, of around 0.13 hPa.

Horizontal space wise, we averaged the air pressure measures at 120 indoor
test locations and 120 outdoor test locations, which reported 1,012.4 hPa and
1,012.59 hPa respectively (see Figure 12(b)). The 0.19 hPa average difference
may provide a good indication to separate the indoor and outdoor users. Note
that both the indoor and outdoor test environments are on pretty much the
same ground level, with the parking garage locating next to the office building.
The physical separation between them are walls, doors which may not be kept
closed at all times. Therefore, a plausible explanation of such difference measure
is that the building’s exhaust ventilation system must have made an impact on
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Figure 10. Comparison of the overall estimated distance based on WiFi and sound signal. The
95% confidence bound of sound based result, calculated by the Kaplan-Meier estimator (Goel,
Khanna, and Kishore 2010), is noticeably tighter than WiFi one.
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Figure 11. Comparison of the indoor estimated distance based on WiFi and sound signal for test
locations less than 3 metres apart. WiFi based distance estimates were slightly more accurate
than sound one.

the air pressure. Much more importantly, the variation of air pressures within the
same building floor, or within the parking garage, is negligible and being lost
within the sensor’s mechanical noise, which turns out to be a great benefactor
for our purpose, since smartphones within those areas are ‘breathing’ the same
air space.
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Figure 12. The air pressure measures in different environments.

Regarding the magnetic field, the magnitude plot of 240 test locations across
the 3 testbeds revealed two interesting observations (see Figure 13). Firstly, the
magnetic variation oscillates much stronger indoors than outdoors, with
a maximum magnitude of nearly 120 uT in the office testbed, compared to
just 67 uT in the parking garage testbed. The high number of electric appliances
and the building materials may have been accounted for this variation.
Secondly, the magnetic anomalies happened in small areas (i.e. only locations
within a small room will have similar high magnetic disturbance).

To assess the efficiency of the magnetic readings with respect to the distance
between the two smartphones, we separate the 240 test locations into 4 categories,
that are, tests within [0-1] metres, [1-2] metres, [2-3] metres, and [3-30] metres
(more emphasis was given for those under 3 metres as they are of our particular
interest), then computing the magnetic magnitude difference between the two
smartphones in each category. The result demonstrated a much smaller Euclidean
distance for close ranges, which implies that smartphones in increasingly long
distance may observe much different magnetic readings (see Figure 14).

Ultimately, the question is, how would the air pressure and the magnetic field
be employed to determine if the two smartphones are in close proximity ?
Based on the above empirical experiments, air pressure wise, an empirical
constant of 0.15 hPa difference threshold (which is above the sensor noise,
but is still below the air pressure separation) may be used to determine if two
smartphones are in close proximity. Magnetic field wise, an empirical constant
of 20 uT difference threshold was chosen. In the next section, we will assess how
those measures affect the overall system performance.

5.6. Contact detection accuracy analysis

Having assessed each of the three processes separately, we may now present
the general system accuracy in detecting smartphones contact. The perfor-
mance metrics are summarised in Table 6.
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Figure 13. The magnetic heat map visualisation of the three testbeds. The colour maps have
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Figure 14. The Euclidean distance between the magnetic measures of the two smartphones at
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ones.
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Table 6. Performance metrics in the contact tracing context.

Metrics Note

True positive (TP) True infection contact registered by the system

False positive (FP) Harmless non-infection contact registered by the system
True negative (TN) Harmless non-infection contact ignored by the system
False negative (FN) Actual contact but ignored by the system

Overall accuracy TP + TN

TP+ TN + FP + FN

For a true positive contact to be registered, both smartphones need to be
within 1 metre of each other for at least 15 minutes (according to the WHO's
Covid-19 infection guideline). In our tests, we will slightly neglect the time
duration constraint, and will only observe 5 minutes per test location to speed
up the experiment procedure. In contrast, a contact is considered as a false
positive, if the phones were more than 1 metre apart (i.e. the contact should not
have been registered by the system). Along the same line, a true negative
contact is one which was not recorded by the system, and the phones were
indeed more than 1 metre apart. Lastly, a false negative contact is one which
was not recorded by the system, although the phones were within 1 metre in
reality.

Overall, out of 240 test instances, when only BLE appearance sensing was
employed, the number of false positives was rather high at 180 (with most of
them indoors) which results in a system accuracy of just 25%. These figures are
unsurprising given the high visibility of BLE. By incorporating distance measur-
ing, the number of false positives dropped significantly to just 61, and more
than doubled the system accuracy. However, the trade-off at this point was the
increasing number of false negatives, which was unfortunately wrongly dis-
carded by inaccurate distance estimates. Lastly, by applying the environment
comparison on top, the number of false positives was further reduced to just 9,
boosting the overall system accuracy to 87.08% (see Table 7).

5.7. Summary of results

Having presented the above experimental results, we may now reflect on the
research questions posed earlier.

Table 7. Performance comparison of different system mechanics. A true positive contact means
the real distance between the smartphones is within 1 metre.

System mechanics Sensors employed FP FN TP TN  Accuracy
Appearance BLE only 180 0 60 0 25%
Appearance, distance BLE, WiFi, Microphone 61 22 38 119 6542%

Appearance, distance, environment  BLE, WiFi, Microphone, Barometer, 9 22 38 171 87.08%
Magnetometer
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With regard to sensing based on the device visibility only, two smartphones
employing just BLE may still see each other well beyond the 2 metre contagious
threshold (as employed by most European countries), in both indoor and out-
door environments with and without obstacles in-between. In some test
instances, the BLE visibility could be up to 20 metres indoors and 30 metres
outdoors. On the other hand, two smartphones more than 2 metres apart were
barely communicable using sound (with a chirp amplitude of 20 dB). In parti-
cular, out of 20 indoor test instances beyond 3 metres, while all of them are
visible with BLE, only 8 were reachable with sound. In addition, the further the
distance between the phones was, the lower the discoverability rate was. This
result suggests that BLE-only based system may return more false positives due
to its high visibility, and several sensor measures should be taken at each
location to ensure good coverage (see Section 5.3 for more detailed results).

With regard to the relative distance estimate, it was highlighted that all
technologies (i.e. WiFi, BLE, sound) struggled to convert their signal measures
to precise distance estimation, especially indoors with a large gap between the
devices, due to the signal multi-path phenomenon. However, when focusing on
test locations within 3 metres, both WiFi and sound based distance estimates
were around 2 metre error, 90% of the time. This result suggests that WiFi and
sound could be combined (e.g. averaged result) to produce a more accurate
relative distance estimate (see Section 5.4 for more detailed results).

With regard to the feasibility of environment comparison, the experiments
across 14 building floors revealed that the air pressure produced by the smart-
phone barometer strictly decreases as the altitude increases, with a clear mea-
suring gap between each floor, and a low signal variation on the same floor. In
addition, there was a clear difference between the indoor and outdoor air
pressures. Lastly, the magnetic field measures vary significantly amongst small
indoor areas. This result suggests that the air pressure and the magnetic field
could provide an extra piece of information in helping to decide whether two
smartphones are sharing the same airspace (see Section 5.5 for more detailed
results).

With regard to the overall contact detection accuracy, for BLE-only system,
the number of false positives was rather high at 180 (out of 240 test instances),
with just 25% accuracy. However, by incorporating WiFi and sound distance
estimate, the system scored just 61 false positives, with more than 65% accu-
racy. Finally, by applying air pressure and magnetic field comparison on top, the
system allowed just 9 false positives, with 87% accuracy. This result demon-
strated the usefulness of combining various smartphone sensors, over single
BLE technology that most existing contact tracing works are currently relying on
(see Section 5.6 for more detailed results).
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6. Conclusion and further work

We have presented our novel, yet practical smartphone-based contact tracing
approach. Through-out the six sections, we have thoroughly assessed the
feasibility and the accuracy of our system in three realistic indoor and outdoor
testbeds.

From our empirical results, we come to the conclusion that BLE only
approach would suffer from a high number of false positives, due to its high
visibility of up to 30 metres outdoors and 20 metres indoors, as well as high RSS
variation because of its frequency hopping technique. WiFi signal, despite its
long range distance, possesses much more stable RSS, and combining with
sound signal would further enhance the distance estimate. More importantly,
we recognise the natural property of WiFi, and BLE signals which may penetrate
walls easily. To this end, air pressure measure provided by the barometer and
the magnetic field magnitude provided by the magnetometer were employed
to determine if the users are breathing the same air.

Ultimately, a system making vital decisions about the people’s health such
as contact tracing should be reliable and informative. Because of several
number of parameters involved in the process (e.g. visibility, distance, time),
it is more helpful to attach other information into all contact registrations (i.e.
a contact estimated to be within 50 cm in more than 15 minutes should have
a higher infection chance, than one estimated to be within 2 metres), rather
than wholly relying on a binary (yes/no) contact detection. Additionally,
exchanged information between the phones could be compressed to reduce
the transferring time. This aspect is particularly relevant in the topic of infor-
mation exchange and could further improve this work. Looking further ahead,
it is critical to recognise that viral infections (e.g. Covid-19, SARS) are spread
through the air. As such, contact tracing technologies should be able to make
distinction between a true contact in shared air space, or a false one segre-
gated by thick walls, to which, this paper is hoping to inspire future similar
contact tracing approaches.

Notes

1. https://www.statista.com/statistics/300378/mobile-phone-usage-in-the-uk-last
accessed in 5/2020.

https://public.flourish.studio/visualisation/2241702/ - last accessed in 7/2020.
https://www.apple.com/covid19/contacttracing — last accessed in 7/2020.
https://govextra.gov.il/ministry-of-health/hamagen-app - last accessed in 7/2020.
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-
sitrep-66-covid-19.pdf — last accessed in 5/2020.

https://www.pepp-pt.org — last accessed in 7/2020.

7. https://www.apple.com/covid19/contacttracing — last accessed in 7/2020.

8. https://opencellid.org - last accessed in 5/2020.
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https://www.statista.com/statistics/300378/mobile-phone-usage-in-the-uk
https://public.flourish.studio/visualisation/2241702/
https://www.apple.com/covid19/contacttracing
https://govextra.gov.il/ministry-of-health/hamagen-app
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf
https://www.pepp-pt.org
https://www.apple.com/covid19/contacttracing
https://opencellid.org
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9. https://developer.android.com/guide/topics/connectivity/wifi-scan — last accessed in
5/2020.

10. Strictly speaking, since Android 8, the startScan() method does impose four predefined
scanning configurations, where the fastest SCAN_MODE_LOW_LATENCY option only
scans for about 300 ms. However, it is still possible (even on the latest Android 10) to
call the deprecated startLeScan()/stopLeScan() methods introduced since Android 5 to
fully control the scanning cycle.

11. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-
sitrep-66-covid-19.pdf - last accessed in 7/2020.

12. Although it is possible to construct a new chirp on the fly with new properties to
quickly adjust to the real-time environment, we reckon this process would add unne-
cessary complexity and power usage to the system. Hence, we leave this for future
investigations.
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