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Abstract. Audio classification using breath and cough samples has re-
cently emerged as a low-cost, non-invasive, and accessible COVID-19
screening method. However, no application has been approved for offi-
cial use at the time of writing due to the stringent reliability and ac-
curacy requirements of the critical healthcare setting. To support the
development of Machine Learning classification models, we performed
an extensive comparative investigation and ranking of 15 audio features,
including less well-known ones. The results were verified on two indepen-
dent COVID-19 sound datasets. By using the identified top-performing
features, we have increased the COVID-19 classification accuracy by up
to 17% on the Cambridge dataset and up to 10% on the Coswara dataset
compared to the original baseline accuracies without our feature ranking.

Keywords: COVID-19 classification - Audio event engineering - Sound
feature ranking.

1 Introduction

A widely accessible, non-invasive, low-cost testing mechanism is the number one
priority to support test-and-trace in most pandemics. The advent of COVID-
19 has abruptly brought respiratory audio classification into the spotlight as a
viable alternative for mass pre-screening, needing only a smartphone to record
a breath or cough sample [3].

It has long been common knowledge that respiratory diseases physically alter
the respiratory environment in a way that often induces audible changes [19].
Consequently, manual auscultatiorﬂ is a common method to identify and diag-
nose respiratory disorders. However, many abnormalities can affect only subtle
changes in auditory cues, making the inherently subjective manual auscultation
process error-prone even when performed by a trained medical professional [2].

To counteract subjectivity, automated audio classification approaches with
promising results have become more and more common in recent years [TJ2g].

! The diagnostic process of listening to internal body sounds, often with a stethoscope.
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One of the main limiting factors is the availability of ground truth data which can
be difficult to obtain, is prone to representing limited diversity in the underlying
population, and requires medical training to label correctly.

Because COVID-19 detection and classification are widespread and critical
problems, multiple universities and research institutions have published COVID-
19 audio datasets [3I2I]. This offers a unique opportunity to develop and verify
classification solutions on independently collected samples from a diverse popu-
lation. The datasets have supported the development of a variety of applications
with Machine Learning (ML) audio classification. However, at the time of writ-
ing, none have yet been officially endorsed for medical usage, largely because of
the high accuracy and reliability expectations for such a critical healthcare task.

This paper aims to improve COVID-19 audio classification by exploring and
optimising the audio signal’s representation for ML. This is achieved by giving
a holistic overview, evaluation, and ranking of 15 audio features in the context
of binary COVID-19 audio classification.

1.1 The paper’s contributions

The findings presented in this paper are directly relevant to the binary COVID-
19 respiratory audio classification task and can benefit future implementations
using the same approach. The following contributions are made:

i. Audio feature analysis and ranking. We perform an extensive comparative
analysis and ranking of 15 sound features prevalent in speech and non-speech
classification to optimise the audio signal’s representation. The evaluation is
carried out on two independent datasets, allowing the findings to be gener-
alised.

ii. Highlighting effective features. We identify sound-based ML features with
strong discriminative performance that go against common rules of thumb.

iii. Increasing the COVID-19 detection accuracy. A natural culmination of the
previous points. Compared to the baseline results presented in the datasets’
original papers, we see an increase in classification accuracy of up to 17% by
incorporating new training features based on our feature ranking.

2 Audio features overview

Feature engineering is a vital step in any ML application, as a model’s predictive
efficiency relies directly on the discriminative information encoded in the input
vectors. We provide a detailed overview and intuition of 15 audio features from
a variety of signal domains before delivering a comprehensive comparison in the
context of COVID-19 audio classification (see Table [1)).

2.1 Time domain

Low-level features extracted directly from the audio signal without requiring a
transformation are grouped in the time domain. While such features are often not
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Table 1: Audio feature selection. The 15 audio features considered in the paper.

Domain Feature category Name Intuition
Time Signal energy RMSE Loudness of the signal.
Waveform ZCR Percussive vs tonal.
Spectral S-BW Perceived timbre.
Spectral S-CENT ‘Brightness’ of a sound.
Frequency Spectral S-CONT  Prevalence of formants.
Spectral S-FLAT Similarity to white noise.
Spectral S-FLUX Rate of frequency changes.
Spectral S-ROLL ‘Skewness’ of the energy.
Cepstral MFCC Timbre, tone colour/quality.
Cepstral MFCC-A  Velocity of temporal change.
Cepstral MFCC-A?  Acceleration of temporal change.
Time-frequency Tonal C-ENS Pitch.
Tonal C-CQT Pitch.
Tonal C-STFT Pitch.
Tonal TN Pitch & pitch height.

meaningful to humans, they are commonly included in audio feature sets because
they are very efficient to calculate. In the context of lung-sound classification,
such features can identify explosive and discontinuous sounds (e.g. crackling)
that occur due to a buildup of fluid or secretions in the throat and lungs [I9]. The
selected features have been previously used for COVID-19 classification [3I21].

i. Root mean square energy (RMSE). A description of the signal’s mean
amplitude, calculated by taking the Root Mean Square (RMS) of energy
over N frames, see Equation . Z, is the average energy per frame n [15].

RMS = /SN a2 (1)

il. Zero-crossing rate (ZCR). The rate of a signal’s sign change over time is
given by Equation . Here x,, is the signal’s amplitude at frame n (N frames
overall), and sign(a) returns 1 if a > 0, 0 if a = 0, and —1 otherwise [15].

ZCR = 1 x SN |sign(x,) — sign(z,—1)| (2)

2.2 Frequency domain

In its original format, digital audio is encoded as a temporal sequence of samples.
Decomposing the signal into its constituent frequencies (e.g. with the Fourier
Transform) reveals information about the frequency content. Because most
frequency-domain features, or spectral features, describe only a small aspect
of the audio signal, they are rarely used individually for audio classification
tasks. The selected features describe and compare the signal’s intensity, which
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can provide information about the state of the respiratory tract, e.g. identify-
ing abnormal lung sounds caused by a respiratory disease [19]. A subset of the
following features has previously been used for COVID-19 detection [3I21].

ii.

iii.

iv.

vi.

Spectral bandwidth (S-BW).  Also referred to as spectral spread, S-BW
describes a signal’s energy concentration around the centroid. Equation
defines bandwidth as the variance around a signal’s expected frequency F
given energy Py and corresponding frequency f in 1 < k < K subbands [17].

SBW = /AL, (i — B2 x Py (3)

Spectral centroid (S-CENT).  The centroid identifies a signal’s mean fre-
quency, i.e. the band with the highest energy concentration. Equation
shows its breakdown into the weighted and unweighted sums of spectral mag-
nitudes Py in the k-th of K subbands. f, is the corresponding frequency [22].

P
S-CENT = 7&2 e (4)

Spectral contrast (S-CONT).  An audio signal’s contrast is evaluated by
comparing spectral energy peaks P, and valleys Vj in each frequency band
k, see Equation llj N represents the number of frames and z, . the FFT
vector of the k-th subband in frame n with elements in descending order [].

S-CONTj, = Py — Vi, = (log & S0 @} ,,) — (log & S0 @ y_pyy)  (5)

Spectral flatness (S-FLAT).  Also called a tonality coefficient, flatness mea-
sures a signal’s similarity to white noise (flat spectrum). It is defined as the
ratio between the geometric and arithmetic means as shown in Equation @,
where Py, is the signal’s energy at the k-th frequency band s.t. 1 < k < K [9].

) _ I, pox
S-FLAT = 5K P (6)
Spectral fluz (S-FLUX). A measure of a signal’s change in energy between
frames, estimated by Equation @ E, i, represents the k-th normalised DF'T
(Discrete Fourier Transform) coefficient in frame n across K coefficients [22].

SFLUX, = Y0 Eop — B2, (7)

Spectral rolloff (S-ROLL). A description of the relationship between fre-
quency and energy, rolloff represents the minimum frequency fr s.t. the
energy accumulated below is not less than proportion S of total energy,
see Equation . Py, is spectral energy in one of K frequency subbands [22].

S-ROLL = argmin fg € {1,..., K} > J", Py > S r_ | Py (8)
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2.3 Time-frequency domain

This feature category illustrates a signal’s frequency-related information as it
transitions over time. We consider two types of time-frequency features: cepstral
features (encoding timbre or tone colour) and tonal features (describing pitch).

Cepstral features This paper focuses on the non-linear Mel-frequency Cep-
strum (MFC), as it is ubiquitous in audio classification tasks. While both spec-
tral and cepstral features can facilitate respiratory classification by exploring a
signal’s frequency content, the latter’s benefit is the inclusion of temporal infor-
mation. MFC features have been previously used for COVID-19 detection [3I12].

i. Mel-frequency cepstral coefficients (MFCC).  Derived from the MFC power
spectrum, a signal is converted into the time-frequency domain by discrete
cosine transform in Equation (9). K is the number of coefficients and s(k)
calculates the logarithmic energy of the k-th coefficient at frame n [18].

MFCC,, = Y5, 5(k) cos ZE=05) (9)

ii. MFCC-A. MFCC’s first-order derivative, referred to as velocity, represents
temporal change [4] and is often included due to its low extraction cost.

ili. MFCC-A?.  Similarly to MFCC-A, the second-order derivative, accelera-
tion, is commonly included because it can improve audio classification [4].

Tonal features Tonal features primarily encode an audio signal’s harmonics in-
formation in 12 pitch classe&ﬂ and are based on the human perception of periodic
pitch [I3]. Two feature groups are considered, distinguished by their underly-
ing representation: Chroma features (chromagram) and Tonnetz (lattice graph).
While the Tonnetz (tone-network) encodes tone quality and height, chroma omit
interval information. A common consequence of respiratory diseases is a narrow-
ing of airways by secretions. The effect is a wheeze because the pitch of in- and
expiration is altered [I9], which can be heard in COVID-19 audio recordings.

i. Chroma energy normalised (C-ENS). A chroma abstraction by considering
short-time statistics within the chroma bands. Normalisation of the feature
vector makes it resistant to dynamic variations, such as timbre [I3].

ii. Constant-Q chromagram (C-CQT). Chroma are extracted from a time-
frequency representation of audio via a filter bank. The constant-Q transform
(CQT) is employed, which has a good resolution of low frequencies [7].

ili. Short-time Fourier Transform chromagram (C-STFT).  The extraction
process is similar to C-CQT. The difference lies in the audio signal’s initial
transformation, in this case via the Short-time Fourier Transform (STFT) [7].

iv. Tonnetz (TN). A lattice graph of harmonic information. Distances between
points become meaningful by encoding pitch as geometric areas [5].

2 Pitch classes of the equal tempered scale, prominent in Western tonal music [13].
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3 Experimental method and results

To make the findings generalisable, the selected 15 audio features are ranked
based on the empirical results and analysis on two independent datasets. The
assumption is that any patterns repeated across both are likely inherent to the
COVID-19 respiratory recordings, not the underlying datasets.

3.1 Research questions

Exploring the following questions is the focus of this body of work. They are
centred on the binary COVID-19 audio classification task and have informed
the experimental design and consequent results analysis.

i. What are the most distinguishable ML audio features?
ii. Are the feature rankings comparable across independent datasets?
iii. What is the performance accuracy of the new ML models using the most
dominant features?

3.2 The datasets

Two independent datasets are considered in parallel throughout the paper to
indicate whether identified feature rankings are likely specific to the underlying
dataset or generally applicable: the Cambridge and the Coswara COVID-19
audio datasets. The distribution of sample counts can be found in Table

Table 2: Sample counts and label stratification of the Cambridge and Coswara
datasets. ‘Shallow’ and ‘deep’ refer to to the ‘shallow’ and ‘deep’ breath (B),
cough (C), and breathcough (BC) recordings available for every participant.

Label Cambridge Coswara-deep Cos.-shallow
B C BC B C BC B C BC

COVID-19 111 111 111 81 81 81 81 81 81
Healthy 194 194 194 1074 1074 1074 1074 1074 1074
> 305 305 305 1155 1155 1155 1155 1155 1155

Introduced in [3], the Cambridge dataset is a collection of healthy and COVID-
positive cough and breath recordings. The data used in this paper is a curated
set of 48kHz WAV file samples collected during April and May 2020.

The Indian Institute of Science has collected shallow and deep breath and
cough recordings in the Coswara dataset [21]. Samples with a compatible format
collected between April and December 2020 are considered. For consistency with
the Cambridge dataset, we filter for COVID-positive and healthy participants.
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3.3 Feature engineering

Cleaning the audio data is especially important because the recording devices
and environments were not controlled. The pre-processing steps include sampling
the audio at 48kHz, converting the signal to mono, trimming the leading/trailing
silences, and normalising the amplitude to [—1, 1] (see Figure 1| for the effects).
The Python-toolkit 1ibrosa [I0] (version 0.8) was used for the signal processing.
The basis of all of our evaluations are the 15 audio features from three signal
domains identified in Section 2] and listed in Table [} In general, ML models
require input with a consistent format and dimension. Because the recordings
have vastly different lengths (1-30 seconds, see Figure [2)) and the selected audio
features are extracted per frame, summary statistics are taken to capture all of
the available information. This leads to a feature vector with consistent dimen-
sions, regardless of the underlying sample’s length. The extracted statistics are
the (i) minimum, (ii) maximum, (iii) mean, (iv) median, (v) variance, (vi) 1st
quartile, and (vii) 3rd quartile, giving us a wide range of descriptive information
about the features’ distribution over frames. The total feature number is 812, as
detailed in Table[3| Large feature dimensions bring a risk of overfitting, however,
only a small subset is considered at a time for feature evaluation and ranking.

3.4 Results description and analysis

The paper’s main contribution is an extensive analysis and ranking of 15 audio
features for COVID-19 classification. We identify informative features by eval-
uating two datasets in parallel: the Cambridge and the Coswara datasets. Due
to their independence, we propose that any recurring patterns in predictive effi-
ciency are likely independent of the underlying dataset, and that the identified
features should be strongly considered for future ML COVID-19 audio classifica-
tion applications. The 15 audio features summarised in Table [3]are analysed over
the following configurations to provide a picture of their predictive efficiency:

i. The Cambridge, Coswara-deep, and Coswara-shallow datasets.
ii. ‘Breath’ (B), ‘cough’ (C), and ‘breathcough’ (BC) feature vectors. The latter
is a concatenation of the previous two feature vectors, i.e. double the size.

- o r
- o

- 4
g 0 5 10 15 E 0 0.5 1 1.5 2 25 3 35 4 45
£ g
-1 -1
0 1.5 3 4.5 6 7.5 9 10 12 0 0.5 1 1.5 2 2.5
Time (s) Time (s)

(a) Raw and pre-processed ‘breath’ audio. (b) Raw and pre-processed ‘cough’ audio.

Fig.1: The effects of cleaning the raw audio recordings. Pre-processing steps
include converting the audio to mono at 48kHz, trimming, and normalising.
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Fig.2: Sample lengths before and after pre-processing. By trimming the leading
and trailing silences at 60dB (empirically identified cutoff point) we can remove
non-discriminative data. Sample lengths are reduced by 1-3 seconds on average.

Table 3: Feature dimensions. 812 features are considered. 7 Summary statistics
(min, max, mean, median, var, Q;, and Q3) are taken across frames to ensure
consistent vector dimensions, regardless of the sample’s length (1-30s). To reduce
the risk of overfitting, small feature subsets are considered at a time for ranking.

Feature Name Count Total (x7)
RMSE Root mean square energy 1 7
ZCR Zero-crossing rate 1 7
S-BW Spectral bandwidth 1 7
S-CENT  Spectral centroid 1 7
S-CONT Spectral contrast 7 49
S-FLAT  Spectral flatness 1 7
S-FLUX  Spectral flux 1 7
S-ROLL  Spectral rolloff 1 7
MFCC Mel-frequency cepstral coefficients 20 140
MFCC-A Mel-frequency cepstral coefficients A 20 140
MFCC-A? Mel-frequency cepstral coefficients A2 20 140
C-ENS Chroma energy normalised 12 84
C-CQT  Constant-Q chromagram 12 84
C-STFT  Short-time Fourier Transform chromagram 12 84
TN Tonnetz 6 42

iii. 5 ML models, selected for the variety in which they partition the label space.
The models are implemented with the scikit-learn [I6] package version
0.24, and optimised with parameter grid searchesﬁ AdaBoost with Ran-
dom Forest (ADA), K-Nearest Neighbours (KNN), Logistic Regression (LR),
Random Forest (RF), and Support Vector Machine (SVM).

Given the datasets’ imbalance, 5-fold Cross-Validation (CV) is employed to
ensure the results’ reliability. We select 3 metrics to compare the features’ im-
pact on the audio classification task at hand: Receiver Operating Characteristic
(ROC), Precision (P), and Recall (R), see Figure [3| for a brief overview.

3 ADA: criterion, depth, number of estimators. KNN: K, weights. LR: C, penalty,
solver. RF: criterion, depth. SVM: C, ~, kernel.
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Fig. 3: Intuition of the considered metrics. In addition to ROC, PR curves are a
valuable tool for evaluating imbalanced dataset because they counteract ROC’s
optimism by omitting true negatives [20]. PR no-skill classifiers correspond to
the dataset’s positive sample ratio (i.e. precision at threshold 0.0).

Feature categories.

An initial overview of the full

feature vectors shows

promising results, as most models outperform their no-skill equivalent. Figure [4]
visualises the mean ROC and PR curves on the ‘breathcough’ vector for each of
the models. It clearly establishes SVM and RF outperforming their counterparts
across all configurations, with a similar trend observed for ‘breath’ and ‘cough’.
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(b) Mean PR over 5-fold CV (positive: COVID). AP is ‘Average Precision’.

Fig.4: ‘Breathcough’ results. Even though the ROC-curves look similar across
datasets, the PR-curves reveal that Cambridge performs better overall. We can
also identify SVM and RF as the top-performing models. In PR-curves, the
unskilled classifier corresponds to the dataset’s positive label ratio.
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Table 4: ‘Breathcough’ 5-fold CV ROC-AUC results. The mean p and standard
deviation o are reported for four signal domains (see Table [1] for details). SVM
and RF consistently achieve the highest accuracies. The feature categories can be
ranked in the following increasing order: time domain, tonal, spectral, cepstral.

Dataset Category ADA KNN LR RF SVM

uw o m o m o n o o o

Time dom. 67.17 0.04 77.96 0.07 76.01 0.07 78.21 0.05 78.78 0.07
Spectral 87.09 0.04 85.34 0.05 84.17 0.06 87.15 0.05 84.84 0.07
Cepstral 83.84 0.05 85.56 0.07 83.27 0.06 87.82 0.07 87.15 0.06
Tonal 84.74 0.09 81.04 0.05 81.44 0.04 81.11 0.07 82.59 0.07

Time dom. 55.65 0.07 62.34 0.02 54.21 0.09 64.65 0.05 63.94 0.07
Spectral 65.77 0.07 68.18 0.04 72.03 0.05 71.76 0.06 74.46 0.06
Cepstral ~ 70.83 0.06 71.03 0.03 75.01 0.05 77.55 0.06 75.62 0.08
Tonal 69.29 0.06 66.27 0.02 68.02 0.03 72.32 0.06 72.98 0.03

Time dom. 61.63 0.04 55.05 0.06 56.16 0.09 54.27 0.07 55.90 0.09
Spectral 66.69 0.04 61.02 0.05 69.85 0.05 69.15 0.05 72.32 0.04
Cepstral 63.13 0.09 68.35 0.04 65.83 0.03 71.79 0.06 70.62 0.04
Tonal 58.37 0.08 63.98 0.05 65.21 0.08 67.17 0.08 68.81 0.08

Cambridge

Coswara-deep

Coswara-shallow

Even though the Cambridge and Coswara datasets have similarly shaped
ROC curves, the former has the best PR curves (i.e. best Average Precision or
AP). This illustrates ROC’s optimism on imbalanced datasets, justifying our
choice of metrics. An influential factor in Coswara’s lower overall accuracies is
the greater imbalance of COVID-positive samples at 13:1 vs 2:1 in the Cambridge
data (see Table. Nonetheless, models trained on the Coswara datasets perform
noticeably better than an unskilled classifier with AP scores between 13-38%
compared to the unskilled 7% (positive sample ratio), see Figure

Table ] confirms our selection of SVM and RF as the best-performing models.
It shows the same ‘breathcough’ feature vector’s predictive efficiency, but this
time considering one signal domain at a time. Apart from two exceptions, SVM
and RF achieve higher accuracies than the other ML models across the board.

Considering SVM’s mean ROC-AUC accuracies on the ‘breathcough’ vector
across all datasets, we note that the 4 feature categories can be broadly ranked
in the following order of increasing predictive efficiency (Cambridge, Coswara-
deep, Coswara-shallow): time domain (79%, 64%, 56%), tonal (83%, 73%, 69%),
spectral (85%, T4%, 72%), and cepstral (87%, 76%, 71%). As evidenced by the
results, the spectral and cepstral categories achieve similarly high accuracies.
More noteworthy is that the same ranking is prevalent for all 5 considered ML
models, leading to the conclusion that the cepstral and spectral feature categories
encode particularly informative data contained in breathing and coughing signals
for COVID-19 classification.
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Fig.5: Normalised ROC-AUC scores of top spectral features for breath (‘B’),
cough (‘C’), and breathcough (‘BC’). S-CONT’s high performance is achieved
because its sub-features (e.g. 3, 6) consistently outperform other spectral fea-
tures, not just because it is the only composite spectral feature (7-D).

Individual features. Turning our attention to individual features, we
focus initially on the best-performing SVM classifier before broadening to include
all models, letting us identify general patterns of predictive efficiency. The results
forming the basis of our analysis are available in Table

The majority of the 15 features significantly outperforms random guesses for
the COVID-19 classification task across all datasets and sample types ‘breath’
(‘B’), ‘cough’ (‘C’), ‘breathcough’ (‘BC’). The lowest accuracies are achieved
by Coswara-shallow, matching previous findings, both overall and in individual
feature categories. Comparing the underlying sample types further underlines the
similarities between the Cambridge and Coswara-deep datasets: ‘BC’ achieves
the highest mean ROC-AUC scores on average (except for time domain features),
whereas Coswara-shallow is split evenly between ‘B’ (time domain, spectral) and
‘C’ (cepstral, tonal). However, given all considered features in a single feature
vector, the Coswara-shallow dataset still shows its highest accuracy on ‘BC’
samples since cepstral and tonal features are very influential overall.

MFCC (cepstral), S-CONT (spectral), and C-ENS/C-STFT (tonal) are the
highest-scoring features in their categories, whereas the time domain is more
variable. Although S-CONT is the only spectral composite feature (7-D), Fig-
ure [5| clearly shows individual sub-features outperforming most other spectral
features. We conclude that S-CONT’s high COVID-19 classification accuracy is
based on informative sub-features rather than just its increased dimensionality.

Lastly, we note a surprising trend for MFCC. A prevalent rule of thumb
suggests 12-13 coefficients for audio classification [3J6JI8I2I]. However, Figure |§|
shows that higher-order features provide discriminative information for the iden-
tification of COVID-19 on par with (Coswara-deep) or significantly outperform-
ing (Cambridge) lower orders. This phenomenon is most noticeable in the ‘BC’
and ‘B’ features and MFCC’s derivatives. Since higher-order features contain in-
formation about fine details such as pitch and tone quality [I1], we extrapolate
that timbral information is very relevant to COVID-19 audio classification.

Discussion. Our extensive analysis, comparison, and ranking of 15 fea-
tures has found recurring patterns of predictive efficiency for COVID-19 audio



Table 5: 5-fold CV ROC-AUC mean p and standard deviation o. The majority of features provide the most accurate results
when considering the ‘breathcough’ (‘BC’) vector. We also find that the feature categories can be ranked in the following order
of increasing accuracy: time domain, tonal, spectral, and cepstral. The same pattern can be found across datasets and models.

(a) SVM results on the Cambridge dataset. (b) SVM results on the Coswara-deep dataset.
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Category Feature

Breath Cough BC

I o u o m o

Category Feature

Breath  Cough BC

n o I o m o

All All 85.86 0.07 85.80 0.05 87.68 0.06 All All 76.79 0.04 70.85 0.06 77.15 0.05
All 72.77 0.04 74.90 0.08 78.78 0.07 All 61.80 0.04 58.58 0.06 63.94 0.07
Time dom. RMSE 72.28 0.05 76.45 0.08 77.88 0.08 Time dom. RMSE 55.89 0.10 61.14 0.07 61.81 0.07
ZCR 64.59 0.08 69.73 0.06 71.40 0.06 ZCR 64.68 0.03 59.45 0.13 64.60 0.04
All 85.28 0.06 84.03 0.07 84.84 0.07 All 76.34 0.05 66.74 0.05 74.46 0.06
S-BW 69.24 0.08 71.57 0.04 75.45 0.08 S-BW 61.63 0.07 63.51 0.05 65.46 0.04
S-CENT  73.45 0.08 70.06 0.08 78.07 0.07 S-CENT  68.53 0.06 59.91 0.06 71.95 0.05
Spectral ~S-CONT 86.14 0.06 84.03 0.08 85.98 0.08 Spectral S-CONT 74.89 0.05 63.42 0.08 73.57 0.09
S-FLAT  74.22 0.07 75.44 0.05 75.87 0.06 S-FLAT  61.77 0.08 59.86 0.06 61.14 0.03
S-FLUX  79.70 0.08 77.14 0.06 82.08 0.06 S-FLUX  63.79 0.06 62.76 0.07 67.20 0.04
S-ROLL  70.70 0.07 67.22 0.04 71.22 0.06 S-ROLL  65.35 0.05 63.16 0.05 67.58 0.08
All 86.25 0.06 83.98 0.06 87.15 0.06 All 74.57 0.03 70.15 0.09 75.62 0.08
Cepstral MFCC 86.56 0.04 83.25 0.05 87.68 0.04 Cepstral MFCC 74.24 0.03 70.74 0.01 75.38 0.05
MFCC-A  84.21 0.04 79.67 0.08 85.54 0.08 MFCC-A  64.85 0.07 68.90 0.05 68.99 0.04
MFCC-A? 84.25 0.09 78.29 0.07 85.24 0.09 MFCC-A? 66.65 0.08 67.72 0.06 70.72 0.07
All 79.69 0.07 78.06 0.07 82.59 0.07 All 71.74 0.05 64.06 0.06 72.98 0.03
C-CQT 76.29 0.06 71.12 0.09 77.30 0.06 C-CQT  67.870.04 62.78 0.07 61.50 0.05
Tonal C-ENS 77.56 0.07 72.11 0.07 83.50 0.03 Tonal C-ENS 70.03 0.07 65.14 0.03 65.96 0.05
C-STFT  77.57 0.05 72.65 0.03 77.78 0.07 C-STFT  67.01 0.05 61.80 0.08 68.19 0.10
TN 74.28 0.04 70.85 0.04 77.57 0.05 TN 60.90 0.04 62.84 0.02 61.33 0.03
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Fig.6: Normalised ROC-AUC of MFCC and derivatives for ‘breathcough’ (BC),
‘breath’ (B), and ‘cough’ (C). Contrary to a common rule of thumb [SI6IISI2T],
13+ features provide significant discriminatory data, and shows that timbral
information is especially relevant to COVID-19 classification.

classification across independent datasets. There is a distinct category ranking
consistent across models, sample types, and datasets (increasing): time domain,
tonal, spectral, and cepstral. Contrary to the intuitive expectation, some ‘com-
plex’ categories provide less discriminative information than ‘simpler’ ones (e.g.
tonal/spectral features). However, this is justified when considering that tonal
features describe pitch and so are more suited to tasks with melodic content.

The ranking underlines the significance of frequency-based features by ele-
vating the spectral and cepstral categories describing timbral aspects and tone
quality/colour. We have also shown that the common guideline to use only the
first 13 MFCC features [BI6JI8|21] is not applicable to COVID-19. Indeed, the
higher-order (timbre) features’ predictive efficiency provides significantly more
discriminatory information, especially for the ‘BC’ and ‘B’ feature vectors.

Taking a step back from the individual features, we note that the most pre-
vailing pattern across all of the previous descriptions is that the concatenated
‘BC’ feature vector outperforms the individual ‘B’ and ‘C’ vectors in most cases.

Given our insights, we compare our ML results to the published baselines,
summarised in Table[6] The evaluated models are of similar type and complexity;
The major difference is our introduction of new training features. We can see
that our improved feature vectors significantly outperform both the Cambridge
and Coswara baseline accuracies by 10-17%, validating our feature selection.
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Table 6: Comparison to dataset papers’ 5-fold C'V baseline results. We select the
most comparable configuration (feature pre-processing and classification model).

Origin Dataset Sample Model ROC-AUC Precision Recall

n o n o m o

This paper Cambridge  BC SVM 87.68 0.06 87.61 0.07 81.39 0.07
3] Cambridge  BC LR 71.00 0.08 69.00 0.09 66.00 0.14

This paper Cos-deep BC SVM 77.15 0.05 76.7 0.0553.09 0.03
[12] Cos-Unknown C RF 6745 — — — — —

4 Related work

During in- and exhalation, air travelling through the respiratory tract undergoes
turbulence and produces sounds. Consequently, any physical changes to the air-
ways or lungs (e.g. caused by diseases such as COVID-19) also alter the produced
respiratory sounds [19]. Even though listening and evaluating lung sounds manu-
ally is inherently subjective, medical professionals have long used this technique
to diagnose a wide variety of respiratory diseases non-invasively [2].

The popularisation of digital signal processing techniques and Machine Learn-
ing (ML) have made the automatic classification of respiratory sounds possible
as a less subjective, low-cost, and patient-friendly (pre-)screening method. A lit-
erature review of existing implementations shows that ML can reliably pick up
on subtle cues in audio signals for a variety of diseases.

Smartwatches and wearable devices have made audio monitoring for health-
care purposes feasible. Nguyen et al. apply a dynamically activated respiratory
event detection mechanism to detect cough and sneeze events non-intrusively [14].
[1] presents classifiers distinguishing between asthma and pneumonia in pediatric
patients. Lastly, an image classification solution with comparable results is de-
veloped in [2], using spectrograms as the input.

One of the first COVID-19 audio datasets containing breath and cough sam-
ples was presented in [3]. Using standard ML and audio processing techniques,
the authors report 71% ROC accuracy for COVID classification. [I12] and [21]
consider further recording types such as vowel intonation and sequence counting,
achieving 67% and 66% accuracy with ML models respectively.

5 Conclusion and future work

Our extensive comparative analysis of 15 audio features has provided signifi-
cant insight into ML feature selection for COVID-19 respiratory audio classifi-
cation and addressed the research questions laid out in Section [3.1] Primarily,
we identify the most informative feature characteristics and verify their ranking
across two independent datasets. Since the two feature rankings show consider-
able overlap, we conclude that the features’ relative salience is likely inherent to
the respiratory signals rather than the evaluated datasets.
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Throughout our analysis, a number of informative audio features are newly
incorporated in the context of COVID-19 classification. In combination with
our feature ranking, we achieve 88% and 77% accuracy on the Cambridge and
Coswara datasets. Since the complexity of the signal processing and ML models
is comparable to the baselines, the increase of up to 17% and 10% respectively
is a consequence of our feature selection. Our established feature ranking can
benefit future sound-based COVID-19 classification applications.

This paper provides a starting point for the holistic evaluation of respira-
tory audio features for COVID-19 classification. Considerations that could be
addressed in future work are a comprehensive strategy to regularise different
sample lengths and to identify the most informative audio features for complex
architectures such as Deep Learning neural networks.

Although sound-based COVID-19 detection is the primary purpose of this
research, many other respiratory diseases and disorders could benefit from the
development and improvement of automatic audio detection systems for diag-
nosis, treatment, and management. Therefore, the approach described in this
paper could be generalised for the detection of other respiratory diseases.
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