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WiFi round-trip time (RTT) fingerprinting: an analysis of 
the properties and the performance in non-line-of-sight 
environments
Xu Feng a, Khuong an Nguyen b and Zhiyuan Luo b

aComputing and Mathematics Division, University of Brighton, Brighton, UK; bComputer Science 
Department, Royal Holloway University of London, Surrey, UK

ABSTRACT
Indoor positioning systems based on WiFi round-trip time 
(RTT) measurement were reported to deliver sub-metre-level 
accuracy using trilateration, under ideal indoor conditions. 
However, the performance of WiFi RTT positioning in com
plex, non-line-of-sight environment remains an open 
research question. To this end, this article investigates the 
properties of WiFi RTT in several real-world indoor environ
ments on heterogeneous smartphones. We present three 
datasets collected on a large-scale building floor, an office 
room and an apartment. The datasets contain both RTT and 
received signal strength (RSS) signal measures with correct 
ground-truth labels for further research. Our results indicated 
that in a complex indoor environment, RTT fingerprinting 
system delivered an accuracy of 0.6 m which was 107% better 
than traditional RSS fingerprinting and 6 m better than RTT 
trilateration which failed to deliver sub-metre accuracy as 
claimed.
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1. Introduction

Traditional GNSS systems (such as GPS) are indispensable for outdoor position
ing and navigation (Gondelach and Linares 2021; Zhang and Masoud 2020). 
However, indoor environments remain a challenge for such technology. The 
thick concrete walls and complex interiors of modern buildings create 
a blockage and greatly attenuate the GPS signals. Therefore, fine-grained indoor 
positioning tracking remains a research challenge.

Since the release of the WiFi IEEE 802.11–2016 standard (Committee 
et al. 2009)), WiFi fine-timing measurement (FTM) protocol has been 
a competitive signal feature for WiFi-based indoor positioning. RTT is an 
estimate of the distance between an initiating station (e.g. a smartphone) 
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and a responding station (e.g. a WiFi access point (AP)), which offers 
a more accurate distance measure for trilateration and avoids the hassle 
of constructing and maintaining the fingerprinting database (Feng, Nguyen, 
and Luo 2022b; Xue et al. 2020). However, despite its promise in achieving 
sub-metre positioning accuracy in ideal line-of-sight (LoS) conditions (Feng, 
Nguyen, and Luo 2022a; Zhang et al. 2020), the performance of WiFi RTT in 
real-world complex, non-LoS (NLoS) indoor environments remained 
unexplored.

Therefore, this article will perform a thorough investigation of the properties 
of the WiFi RTT signal in large, complex, and realistic NLoS indoor experiments 
that include an office, an apartment, a corridor, and a campus floor on different 
smartphones. We also assess the positioning accuracy of WiFi RTT, RSS, hybrid 
RTT-RSS fingerprinting, and trilateration systems in the above challenging 
environments.

1.1. The article’s contributions

The article’s contributions are summarised as follows:

● Three real-world WiFi RTT & RSS datasets with ground truth labels, 
including one collected in a large-scale building floor testbed. To 
support the development of future RTT positioning systems, we contribute 
three datasets containing both WiFi RTT and RSS signal measures with 
ground truth labels manually verified by multiple human testers. To the 
best of our knowledge, these were the first publicly available datasets that 
contain both WiFi RSS and RTT signal measures, as well as LoS conditions of 
each AP for every location.

● Thorough WiFi RTT analysis in challenging NLoS indoor environments. 
We analysed the most relevant WiFi RTT signal properties on three smart
phones to investigate the true nature of the measurement. We also con
sidered challenging scenarios such as AP interference, body blockage, wall 
attenuation, reflections, and so on. The impacts of different placements 
and orientations of smartphones were also analysed.

● Performance ranking of WiFi RTT, RSS, hybrid RTT-RSS fingerprinting, 
and trilateration in various real-world scenarios. We conducted 
a comparative analysis on RTT- and RSS-based indoor fingerprinting sys
tems with different Machine Learning algorithms and trilateration.

The rest of the article is organised as follows. Section 2 introduces the related 
work in WiFi RTT indoor positioning. Section 3 provides a detailed description of 
WiFi RTT technology, then the properties of WiFi RTT signal measure in 

2 X. FENG ET AL.



challenging environments are investigated in Section 4. The experimental setup 
and empirical performance of WiFi RTT fingerprinting are presented and ana
lysed in Section 5. Finally, Section 6 concludes our work and outlines future 
work.

2. Related work

To achieve robust and reliable indoor positioning performance, systems 
utilising easily-employed signal transmitters and receivers were proposed. 
Technologies such as Ultra-wideband (UWB) (Poulose and Han 2020; 
Ridolfi et al. 2021), Bluetooth Low Energy (BLE) (Bai et al. 2020; Spachos 
and Plataniotis 2020), Ultrasonic (Carotenuto et al. 2020; Lindo et al. 2015) 
and LED (Hassan et al. 2015; Rahman, Haque, and Kim 2011) were lever
aged in the literature for indoor tracking. Due to the omnipresent infra
structure of WiFi-enabled devices, WiFi fingerprinting has become one of 
the most popular approaches for indoor positioning (Liu et al. 2020; Xue 
et al. 2020). Such systems used the WiFi received signal strength (RSS) as 
signal features, and were known to achieve an accuracy of a few metres 
on average (Abbas et al. 2019; Poulose, Kim, and Han 2019).

Systems that leverage WiFi RTT were reported to achieve sub-metre 
accuracy indoors (Dümbgen et al. 2019; Gentner et al. 2020). Many have 
conducted research to verify the accuracy of the systems based on WiFi RTT 
with different positioning algorithms, including trilateration (Choi and Choi  
2020), traditional machine learning (Hashem, Harras, and Youssef 2021), and 
deep learning (Seong et al. 2021). However, the challenges for RTT and RSS 
in NLoS environments were also highlighted in (Nguyen et al. 2021; Singh, 
Choe, and Punmiya 2021). To make the best of WiFi signals and achieve 
better positioning accuracy, systems supporting both WiFi RTT and RSS 
measurements were proposed in (Dong, Arslan, and Yang 2021; Hashem, 
Harras, and Youssef 2021). Furthermore, systems were proposed to identify 
LoS scenarios in order to gain a promising positioning result (Cao et al.  
2020; Sun et al. 2020). Some have further studied some general properties 
of WiFi RTT and discovered an offset in RTT measurements (Gentner et al.  
2020; Horn 2020). The biases of such offset in different devices (Choi and 
Choi 2020; Choi, Choi, and Talwar 2019) and in different distances (Sun 
et al. 2020) were also analysed. Different calibration models were leveraged 
to compensate for such offset: fixed offset (López-Pastor et al. 2021), 
double exponential (Horn 2020), linear polynomial, and quadratic polyno
mial (Choi and Choi 2020). However, to the best of our knowledge, there is 
still a lack of comprehensive analysis of WiFi RTT measurements in challen
ging environments.
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3. RTT background

This section overviews the underlying mechanism of WiFi RTT technology and 
provides in-depth description of the working principle of RTT trilateration and 
RTT-based fingerprinting.

3.1. RTT protocol

WiFi RTT is a handshaking FTM protocol standardised by IEEE 802.11–2016 
to estimate the distance between an initiating station (e.g. a smartphone) 

Figure 1. Overview of FTM (also known as RTT) protocol. The dashed lines show the control 
messages before the measurement took place.
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and a responding station (e.g. a WiFi AP), using round trip time measure
ments. As shown in Figure 1, an RTT measurement starts with an FTM 
request sent by the smartphone to the AP. The AP will then respond with 
an acknowledgement (Ack) message indicating whether it agrees with the 
request. Once agreed, the AP will send an FTM message FTM1 to the 
smartphone at time tð1Þ1 . After receiving the FTM1 message at time tð1Þ2 , the 

smartphone will send another acknowledgement (Ack) at time tð1Þ3 to the 

AP, that arrives at the time tð1Þ4 . The timestamps of the process will be 
stored and transmitted back to the smartphone through the following 
FTM2 message. The WiFi RTT measurement is defined as:

RTT ¼
1
m

Xm

i¼1

ððtðiÞ4 � tðiÞ1 Þ � ðt
ðiÞ
3 � tðiÞ2 ÞÞ (1) 

where m is the total number of FTM round trips, ðtðiÞ4 � tðiÞ1 Þ is the time it takes for 

the ith round trip, ðtðiÞ3 � tðiÞ2 Þ is the time delay inside the smartphone. The 
distance is then calculated as: 

Distance ¼
RTT

2
� c (2) 

where c is the speed of light.
On Android phones, each measuring burst contains eight RTT measures and 

their average is recorded as the final RTT measure to represent the distance 
estimation. Note that the whole process does not require any direct connection 
between the AP and the smartphone.

Figure 2. Overview of WiFi-based fingerprinting for indoor positioning.
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3.2. RTT-based fingerprinting

Being susceptible to interior changes of the indoor environment, WiFi signal 
measures may vary greatly in two locations close to each other. Especially for 
NLoS scenarios, where WiFi propagation suffers from blockage, reflection, 
attenuation, etc., the signal measures would fluctuate and become unreliable. 
Thus, in a complicated indoor space, each location will have its own unique WiFi 
signal measurements. Such unique measurements are defined as the WiFi 
fingerprint of a specific location and could be used for indoor positioning.

As shown in Figure 2, the fingerprinting approach normally consists of an 
offline phase and an online phase. In the offline phase, a database containing 
the unique WiFi fingerprints, along with the ground-truth coordinates of all 
reference points in the testbed, is collected. Then, a data preprocessing method 
is applied to replace missing values, remove duplicates and outliers, and nor
malise the collected signal measures. Next, this dataset is used to train 
a positioning algorithm. In the online phase, when a user walks into the testbed 
for the first time, a new WiFi sample is reported to the positioning system. After 
the same preprocessing process, the testing sample is compared with the 
training samples in the offline database. Finally, the positioning algorithm 
makes the positioning estimation. Though fingerprinting is widely used by RSS- 
based indoor positioning systems, it could also be utilised by RTT signal 
measure.

RTT leverages the time the WiFi signal travels from the transmitter to the 
receiver to obtain the distance in between. Because WiFi signal travels at the 
speed of light, any minor delays in the propagation path would lead to 
a noticeable change in the RTT signal measurement. Thus, RTT measures can 
also be used to represent the characteristics of WiFi signal propagation. 
Intuitively, just like RSS fingerprints, different locations in the same testbed 
would also have their unique RTT fingerprints. Compared to RSS, RTT is more 
sensitive to interior changes and is believed to deliver more promising finger
printing performance than RSS.

3.3. Trilateration

RTT signal measurement was first introduced to obtain the distance between 
the AP and the user directly. Leveraging the distances between the user and 
multiple APs, the positioning system could simply determine the user’s location 
by trilateration. Trilateration is a geometric method using both the known 
locations of several APs and the distances between each AP and the user to 
perform localisation. Figure 3 illustrates how WiFi RTT measures are incorpo
rated into trilateration to locate the user.

In a two dimensional space, at least three intersecting circles located at 
known locations are required to determine the user’s location, defined as: 
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ðlong � long1Þ
2
þ ðlat � lat1Þ

2
¼ dist2

1 (3) 

ðlong � long2Þ
2
þ ðlat � lat2Þ

2
¼ dist2

2 (4) 

ðlong � long3Þ
2
þ ðlat � lat3Þ

2
¼ dist2

3 (5) 

Furthermore, in 3-D positioning space, the equations are formulated as: 

ðlong � long1Þ
2
þ ðlat � lat1Þ

2
¼ dist2

1 (6) 

ðlong � long2Þ
2
þ ðlat � lat2Þ

2
¼ dist2

2 (7) 

ðlong � long3Þ
2
þ ðlat � lat3Þ

2
¼ dist2

3 (8) 

ðlong � long4Þ
2
þ ðlat � lat4Þ

2
¼ dist2

4; (9) 

where long and lat are the coordinates of the user to be solved, ðlong1; lat1Þ, 
ðlong2; lat2Þ, ðlong3; lat3Þ,ðlong4; lat4Þ represent the true coordinates of the 
know APs in the testbed, and dist1, dist2, dist3, dist4 are the distances between 
the user and the APs derived from RTT measurement.

Compared to RTT fingerprinting, trilateration method does not need the data 
preparation and maintenance process to collect and update the training data 
over a long period of time. Besides, RTT measurement can take place without 
direct connections to the APs, which ensures the user’s privacy. Knowing only 

Figure 3. Overview of RTT-based trilateration in a two-dimensional space.
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the exact locations of APs, the user could easily obtain the localisation of the 
current position by leveraging trilateration. However, RTT trilateration highly 
relies on the LoS condition. On the contrary, RTT fingerprinting could utilise the 
unique measurement caused by NLoS to better localise the user.

4. Analysis of the RTT properties

This section details the analysis of the WiFi RTT measures, in comparison to RSS, 
in a complex office environment, filled with furniture, electrical devices and 
electromagnetic signal transmitters (e.g. WiFi, BLE), one of the most common 
indoor environments for WiFi-based indoor positioning. The RTT-enabled smart
phones used in this analysis were LG G8X ThinQ (LG), Google Pixel 3 (Pixel), and 
Nokia 8.5 5 G (Nokia) (see Table 1). The Google WiFi router was used as the 
Access Point for the experiments. We recorded 300 WiFi samples per reference 
point. Note that at the time of writing, most iOS devices did not support IEEE 
802.11–2016 standard. Additionally, there was no iOS API to access WiFi RTT 
distance measure or location. Therefore, we only focused on WiFi RTT experi
ments on Android phones.

4.1. Body blockage and AP interference

In order to observe the stability of the RTT and RSS signal, we recorded the 
measures in three different situations, including LoS, body blockage and AP 
interference, as follows:

● To create the LoS condition, we set the smartphone 3 m away from the AP 
with no obstacles in-between, while keeping both of them at the same 
height to minimise potential interference.

● To create body blockage, a person stood 20 cm right next to the smart
phone, to imitate the scenario where the user accidentally blocks the signal 
transmission.

● To observe the influence of AP interference, we introduced two more 
Google APs in the environment. Furthermore, we put the phone inside 
a plastic case.

Table 1. The smartphones used in the experiments.

Name
Year 

manufactured
Operating 

system CPU chipset WiFi standards

Google 
Pixel 3

2018 Android 9 Qualcomm Snapdragon 
845

802.11ad multi-gigabit, 802.11ac 2x2, 
802.11k/r/v

LG G8X 
ThinQ

2019 Android 11 Qualcomm Snapdragon 
855

802.11ax-ready, 802.11ac Wave 2, 
802.11a/b/g, 802.11n

Nokia 8.5 
5G

2020 Android 11 Qualcomm Snapdragon 
765G 5G

802.11ax-ready, 802.11ac Wave 2, 
802.11a/b/g, 802.11n
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The settings of the three situations are shown as Figure 4.
Figure 5 demonstrates that in the LoS scenario, LG and Nokia had more stable 

RSS measurements. LG had stronger signals than the other two. We observed 
that both Pixel and Nokia phones were more vulnerable with the AP interfer
ence and that they had weaker and less stable RSS measures. The influence of 
the human body as an obstacle was noticeable. Not only would the RSS 
measures be unstable, but the signal strength would also be reduced drastically. 
It was also observed that the plastic phone case only had a negligible impact on 
the RSS measures (see Figure 6). Thus, the phone case condition will not be 
considered further.

The results from the RTT measurement are shown in Figure 7. We observed 
that in the LoS scenario, LG had the most stable RTT measure, while Pixel had 
the worst measures which is consistent with their RSS performances. It was also 
observed that each smartphone had its own RTT offset due to the impact of the 
complex indoor environment, which was consistent with previously reported 
research (Gentner et al. 2020; Guo et al. 2019). Nokia had the most surprising 
offset of more than 6.5 m. Under the AP interference, LG and Nokia were more 
robust than Pixel, and RTT measures were more stable than RSS measures. When 
the human body blocked the signals, all three smartphones generated larger 
RTT measures (see Figure 8).

Figure 4. The settings of LoS, AP interference, body blockage scenarios.

JOURNAL OF LOCATION BASED SERVICES 9



4.2. Placement and orientation

To further investigate the influences caused by different placements and orien
tations of the smartphone, we performed the following experiments.

First, we evaluated the RTT and RSS distributions when the smartphone was 
held in different ways. In this scenario, the smartphone was placed 2 m away 
with a clear LoS and at the same height as the AP. Then, we introduced different 
scenarios to place the smartphone (see Table 2). The distributions of RTT and 
RSS are shown in Figure 9. The variance of the RSS measure could be up to −20 
dBm and that on RTT could be up to 0.65 m. In general, RTT was more sensitive 
to the phone placement as it travels at the speed of light and any minor delay 
would cause a considerable estimation error.

Next, we changed the heading directions of the phone and took the corre
sponding RTT measures (see Figure 10). The results demonstrated significant 
influences on the RTT measure with LG and Nokia which both produced an 
offset of up to 0.4 m.

Figure 5. The WiFi RSS data distribution under LoS, AP interference, body blockage and phone 
case blockage (only LG) scenarios. The smartphones were set 3 m away from the Google WiFi 
AP.
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4.3. Large scale variation

4.3.1. Horizontal ranging
To study the horizontal spatial impact on the signal measurements, we per
formed ranging experiments under three different environments as shown in 
Figure 11. They were office LoS, office NLoS and corridor LoS. The length of the 
testing area of these three ranging tests was 3 m, 2 m, and 10 m, respectively. 
The smartphone was moved across the testing area away from the AP at 20 cm 
intervals. To construct an NLoS testbed, we set the AP at one side of a 16 cm 
thick wall while recording the WiFi measurements on the other side. In all these 
tests, the smartphone was set at the same height as the AP to only focus on 
horizontal ranging. We recorded the WiFi signals for 30 seconds per reference 
point.

The ranging test results showed that within 10 metres, the RTT measure 
would have some constant offset from the true distance, which may be 
caused by the signal attenuation (see Figures 12-14). Such offset varies 
from one smartphone to another, which is consistent with our findings in 
the previous section about body blockage and AP interference. The NLoS 

Figure 6. The comparison of RSS distribution under LoS, AP interference, body blockage and 
phone case blockage on three smartphones. Longer bar indicates signal instability.
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condition also affects the constant offset pattern of the RTT measures (see 
Figure 12 and Figure 13). In the corridor, where the signals suffered from 
much more reflections, RSS measure becomes unpredictable as shown in 
Figure 14. It was surprising that locations 5 m or 8 m away had the same RSS 
measure. It may be concluded that the RTT measures were more robust and 
showed a clear positive correlation to the true horizontal distance, compared 
to RSS measures.

Figure 7. The raw WiFi RTT data distribution and CDF plot under LoS, AP interference, body 
blockage and phone case blockage (only LG) scenarios. The smartphones were set 3 metres 
away from the Google WiFi AP.
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4.3.2. Vertical ranging
To evaluate the vertical spatial impact on the signal measurements, we per
formed ranging experiments. To focus on the vertical distance, the testbed was 
a completely LoS scenario. The smartphone was placed directly above the AP 
and moved further away from it. As shown in Figure 15, the RTT vertical ranging 
had an offset that varied among different smartphones, which was consistent 
with the horizontal ranging results. For LG and Pixel, the RTT measures showed 
a clear positive correlation to the true horizontal distance. But the RTT measures 
from Nokia barely reflected the changes in vertical distance. It was observed 

Figure 8. The comparison of RTT distribution under LoS, AP interference, body blockage and 
phone case blockage on three smartphones. Longer bar indicates signal instability.

Table 2. The different placements of the smartphone.
Placement Description

LoS The back of the phone faces towards the AP and is at the same height.
NLoS A 16 cm thick wall blocks the signal.
Face to The back of the phone faces directly to the AP.
Face back The screen of the phone faces directly to the AP.
Face up The screen of the phone points to the ceiling.
Face down The screen of the phone points to to the floor.
Set high The phone is held higher than the AP.
Set low The phone is held lower than the AP.

JOURNAL OF LOCATION BASED SERVICES 13



that in LoS vertical ranging experiment, the RSS signal measures were less 
robust than RTT measures, especially for Pixel and Nokia.

Based on both the horizontal and vertical ranging experiments, we 
observed a positive correlation between WiFi RTT measures and horizontal 
and vertical distances. Moreover, the instability of RTT measures in differ
ent scenarios ensured the unique WiFi fingerprints of different locations. 
As discussed in Sections 3.2 and 3.3, to obtain the three-dimensional 
coordinates of the user’s location, fingerprinting and trilateration methods 
could both be utilised. To perform fingerprinting in 3-D space, 

Figure 9. The WiFi RTT and RSS distributions with different gestures as described in Table 2. The 
smartphones were set 2 m away from the AP.
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Figure 10. The WiFi RTT distribution of the smartphone with different heading directions. The 
smartphone was set 2 m away and at the same height as the AP with its screen pointing to the 
ceiling. The orange dots indicate the average LoS RTT measures while the phone is in the LoS 
scenario.

Figure 11. Overview of the ranging testbeds. The orange dots indicate the location of the AP. 
The grey area shows the experimental area.
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a 3-D dataset needs to be collected in the offline phase and fed into 
a positioning algorithm. As the WiFi RSS and RTT measures vary in both 
horizontal and vertical directions, the unique fingerprints of a 3-D location 
could be used to locate the user. Furthermore, as illustrated in 
Section 3.3, at least 4 APs with known locations are required to locate 
the user’s location by trilateration.

Figure 12. RTT measures as a function of the true distance and scaled RTT/RSS at different 
distances from the AP in office LoS scenario. The data was pre-processed, so all of its values are 
between 0 and 1. Boxplots of RSS measures are in red while those of RTT are in blue. The bigger 
the scaled RSS is, the weaker the signal is.
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4.4. Summary of signal properties

Table 3 summarises the properties of RTT and RSS. In short, RTT measures were 
more stable and more reliable than RSS measures in most situations. 
Furthermore, RTT measures had an offset in ranging which should be taken 
into consideration. The robustness towards interior changes makes RTT a better 
measure to leverage for indoor positioning fingerprinting.

Figure 13. RTT measures as a function of the true distance and scaled RTT/RSS at different 
distances from the AP in office NLoS scenario. Boxplots of RSS measures are in red while those 
of RTT are in blue. The bigger the scaled RSS is, the weaker the signal is.
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5. RTT indoor fingerprinting

To validate the performance of WiFi RTT-based indoor positioning system, 
we performed experiments in three real-world environments including an 
entire floor of a campus building, an office room, and an apartment. The 
performance of WiFi RSS-based indoor positioning, measured at the same 
training locations, was used as the baseline.

Figure 14. RTT measures as a function of the true distance and scaled RTT/RSS at different 
distances from the AP in corridor LoS scenario. Boxplots of RSS measures are in red while those 
of RTT are in blue. Note that the bigger the scaled RSS is, the weaker the signal is.
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5.1. Experimental setup and data collection

We present three datasets: a campus building floor, an office, and an 
apartment (https://github.com/Fx386483710/WiFi-RTT-RSS-dataset) (see 
Figure 16). To the best of our knowledge, the proposed datasets were 
the first publicly available large-scale datasets that include both WiFi RTT, 

Figure 15. RTT measures as a function of the true distance and scaled RTT/RSS at different 
distances from the AP in vertical ranging experiment. Boxplots of RSS measures are in red while 
those of RTT are in blue. Note that the bigger the scaled RSS is, the weaker the signal is. For 
Nokia phone, the RTT measures barely changed when the phone was moved, leading to 
a barely visible boxplot.
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RSS signal measurements, and LoS conditions of each AP for every refer
ence point. For future research purposes, the proposed datasets contain 
more than 120 scans of WiFi signal measures for every reference point, 
which would benefit the assessment of the statistical features of WiFi RTT 
and RSS (see Table 4).

We used three different splits of training and testing sets when assessing the 
system performance. In addition, the training and testing points did not overlap. 
13 RTT-enabled Google APs were set up with respect to real-world placements 
of the building’s APs. The LG G8X ThinQ smartphone, the most reliable device as 
shown in the previous experiments, was used to collect the WiFi signals. 
A person held the phone at chest height during the whole recording process.

Table 5 shows a snapshot of the dataset. Measurements recorded in 
columns AP1 RSS to AP13 RSS are the signal measures received from each 

Table 3. Comparisons of RTT and RSS properties.
Property RTT RSS

Less severely affected by body blockage Yes No
More robust when interfered Yes No
Less affected by phone case Yes No
More sensitive to placements and heading directions of the smartphones No No
Has an offset in ranging Yes No
LoS stability Yes No
NLoS stability No No
More sensitive to interior changes Yes No

Figure 16. Layout of the three testbeds. The orange dots show the locations of the RTT-enabled 
APs. All measurements are taken in the grey areas.
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AP. The value −200 dBm indicates that the AP is not visible from the 
current reference point. Columns X and Y specify the ground truth label 
of the location, while column LoS APs indicates which APs have a direct 
LoS to this location. Similarly, an example of the RTT training data is 
demonstrated in Table 5 (b). The value of 100,000 mm indicates that no 
RTT signal is received from the AP.

5.2. Empirical results

To evaluate the performance of RTT and RSS fingerprinting-based systems, we 
adopted nine popular machine learning (ML) and deep learning (DL) algorithms 

Table 4. The details of the proposed datasets.
Dataset 
features Building floor Office Apartment

Area 92 � 15 m2 5.5 � 4.5 m2 7.7 � 9.4 m2

Grid size 0.6 � 0.6 m2 0.455 �
0.455 m2

0.48 � 0.48 m2

Reference 
points

642 37 110

Samples per 
RP

120 120 120

Data samples 77,040 4,440 13,200
Training 

samples
57,960 3,240 9,720

Testing 
samples

19,080 1,200 3,480

Signal 
measure

WiFi RTT, WiFi RSS WiFi RTT, WiFi 
RSS

WiFi RTT, WiFi RSS

Other  
information

LoS condition of every AP LoS condition 
of every AP

LoS condition of every AP

Collection 
time

3 days 1 day 1 day

Notes A complex real-world scenario with both 
LoS and NLoS conditions

A LoS scenario Contains an AP with NLoS paths 
for most of the RPs

Table 5. A Snapshot of the proposed WiFi dataset. The value −200 dBm in (a) and 100,000 
millimetres (mm) in (b) indicate that the AP is not visible from the current reference point.

(a) WiFi RSS data samples

X Y AP1 RSS (dBm) AP2 RSS (dBm) . . . AP13 RSS (dBm) LoS APs

1 15 −200 −200 . . . −73 12
1 16 −200 −200 . . . −70 12
2 0 −200 −200 . . . −71 None
2 1 −200 −200 . . . −63 12
. . . . . . . . . . . . . . . . . . . . .
125 15 � 74 � 47 . . . � 200 2 3

(b) WiFi RTT data samples
X Y AP1 RTT (mm) AP2 RTT (mm) . . . AP13 RTT (mm) LoS APs
1 15 100,000 100,000 . . . 5,958 12
1 16 100,000 100,000 . . . 4,893 12
2 0 100,000 100,000 . . . 8,716 None
2 1 100,000 100,000 . . . 10,062 12
. . . . . . . . . . . . . . . . . . . . .
125 15 10,585 598 . . . 100,000 2 3
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to estimate the location, namely K-Means, K-Nearest Neighbours (KNN), Linear 
Regression (LNR), Random Forest (RF), Gradient Boosting (GB), Multilayer 
Perceptron (MLP), Deep Neural Network (DNN), Convolutional Neural Network 
(CNN) and Autoencoder (AE). For AE, a support vector regressor (SVR) was 
leveraged for positioning estimation. We also used trilateration on RTT data as 
the baseline accuracy. A desktop with Intel i9-12900K @4.80 GHz CPU, 32GB 
DDR4 4000 MHz memory, and NVIDIA GeForce 3080Ti GPU was used to perform 
the positioning algorithms using the Python Scikit-learn and TensorFlow pack
age. Note that, we took into account the offset of the LG smartphone RTT 
measurement when calculating the trilateration estimations. Root mean 
squared error (RMSE) is used as an evaluation metric accompanied by the 
cumulative distribution function (CDF) plot. Furthermore, we applied two scal
ing methods, standard scaler (std) and min max scaler (mm), on the signal 
measures. For machine learning or deep learning based indoor positioning, 
the RMSE results are presented in Tables 6, 7 , and 8, while Figures 17, 18 , 
and 19 demonstrate the CDF results.

It was observed that WiFi RTT-based fingerprinting utilising ML achieved 
an accuracy of below 1 metre under all testing conditions, except for LNR- 
based ones, because LNR is limited to linear relationships. RTT trilateration 
struggled at about 1.5 metres and over 6 metres accuracy in apartment and 

Table 6. RMSE results of WiFi-based indoor positioning 
utilising machine learning and deep learning in the building 
floor dataset. The terms mm and std indicate that the 
features are pre-processed with standard scaler (std) and 
min max scaler (mm), respectively.

Method RTT+RSS RTT RSS

KNN 0.781 0.781 1.470
KNN mm 0.971 0.791 1.470
KNN std 0.930 0.791 1.463
K-means 0.786 0.777 1.547
K-means mm 1.028 0.791 1.533
K-means std 0.984 0.785 1.551
LNR 2.999 3.532 3.699
LNR mm 2.995 6.562 8.012
LNR std 3.000 6.646 8.079
RF 0.688 0.751 1.382
RF mm 0.688 0.752 1.379
RF std 0.688 0.751 1.380
GB 0.735 0.634 1.359
GB mm 0.735 0.634 1.360
GB std 0.737 0.634 1.359
MLP mm 0.738 0.864 1.317
MLP std 0.697 0.692 1.376
DNN mm 0.831 0.748 1.364
DNN std 0.689 0.650 1.460
CNN mm 0.600 0.528 1.379
CNN std 0.867 1.002 1.391
AE+SVR mm 1.865 1.929 1.338
AE+SVR std 1.089 1.270 1.244
Trilateration N/A 6.776 N/A
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Table 7. RMSE results of WiFi-based indoor positioning 
utilising machine learning and deep learning for the office 
room dataset. The terms mm and std indicate that the 
features are pre-processed with standard scaler (std) and 
min max scaler (mm), respectively.

Method RTT+RSS RTT RSS

KNN 0.394 0.394 0.590
KNN mm 0.593 0.394 0.629
KNN std 0.554 0.399 0.591
K-means 0.406 0.408 0.624
K-means mm 0.631 0.418 0.663
K-means std 0.583 0.418 0.628
LNR 0.860 0.939 0.599
LNR mm 0.619 0.946 0.606
LNR std 0.609 0.944 0.599
RF 0.379 0.372 0.607
RF mm 0.381 0.372 0.606
RF std 0.380 0.372 0.605
GB 0.356 0.376 0.650
GB mm 0.357 0.376 0.654
GB std 0.356 0.376 0.653
MLP mm 0.406 0.338 0.600
MLP std 0.335 0.365 0.709
DNN mm 0.388 0.340 0.658
DNN std 0.367 0.390 0.647
CNN mm 0.311 0.366 0.593
CNN std 0.400 0.374 0.627
AE+SVR mm 0.517 0.578 0.597
AE+SVR std 0.435 0.552 0.573
Trilateration N/A 0.723 N/A

Table 8. RMSE results of WiFi-based indoor positioning 
utilising machine learning and deep learning for the apart
ment dataset. The terms mm and std indicate that the 
features are pre-processed with standard scaler (std) and 
min max scaler (mm), respectively.

Method RTT+RSS RTT RSS

KNN 0.562 0.562 1.289
KNN mm 0.872 0.562 1.289
KNN std 0.860 0.575 1.344
K-means 0.592 0.594 1.465
K-means mm 1.026 0.582 1.445
K-means std 0.963 0.634 1.421
LNR 1.396 1.869 1.389
LNR mm 1.383 1.897 1.389
LNR std 1.365 1.859 1.389
RF 0.609 0.589 1.279
RF mm 0.609 0.589 1.279
RF std 0.617 0.589 1.280
GB 0.813 0.731 1.333
GB mm 0.813 0.731 1.333
GB std 0.813 0.731 1.333
MLP mm 0.661 0.705 1.237
MLP std 0.634 0.540 1.299
DNN mm 0.622 0.562 1.259
DNN std 0.560 0.540 1.268
CNN mm 0.508 0.458 1.268
CNN std 0.570 0.504 1.325
AE+SVR mm 1.009 1.255 0.986
AE+SVR std 0.682 0.979 0.780
Trilateration N/A 1.586 N/A
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building floor environments, respectively. The reason fingerprinting was 
better than trilateration because the signals were heavily attenuated. Such 
a phenomenon had an impact on RTT measures but benefited the perfor
mance of fingerprinting.

We observed that for the apartment testbed that contained an NLoS AP for 
most reference points, it was difficult for ML-based fingerprinting systems to 
achieve a better positioning accuracy than the other two scenarios. By analysing 
the standard deviation of the APs in the apartment dataset, it was observed that 

Figure 17. CDF of WiFi-based indoor positioning utilising ML with the building floor dataset. 
Note that in (a) and (b), the RTT+RSS line overlaps with the RTT line.
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the RTT measures only had an average standard deviation below 7,600 mm, 
compared with the average standard deviation of 39,000 mm and 16,000 mm 
for the building floor and office LoS datasets, respectively. Furthermore, the 
standard deviation of the RTT measurements from the NLoS AP was only 4,691  
mm, which made the positioning estimations inaccurate based on such similar 
RTT samples.

Using hybrid RTT-RSS measurements as input features was not as helpful 
as expected. The RMSE results indicated that introducing RSS features to RTT 

Figure 18. CDF of WiFi-based indoor positioning utilising ML with the office dataset. Note that 
in (a), (b), and (d), the RTT+RSS line overlaps the RTT line.
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data had only a minor impact on the accuracy most of the time. Also, 
applying standard scaler and min max scaler on WiFi measurements did 
not greatly improve the performance of ML algorithms. This was because 
raw RTT measurements already contained sufficient information for 
fingerprinting.

From the CDF plots, we observed that RTT-based system could get an 
accuracy of below 1 metre up to 80% of the time in complex building floor 
environment, and up to 90% in both building floor and apartment scenarios, 

Figure 19. CDF of WiFi-based indoor positioning for utilising ML with the apartment dataset. 
Note that in (a), (b) and (d), the RTT+RSS line overlaps the RTT line.
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and even up to 98% in LoS office scenario. The hybrid RTT-RSS-based system 
had similar results to the RTT-based one by showing its overlapping CDF curves. 
On the contrary, the RSS-based system got an accuracy of below 1 m less than 
60% of the time in the building floor dataset and the apartment dataset, and 
only 80% in the office room. RSS, due to its less robust nature to the interior 
changes was producing twice the positioning error, compared to RTT.

For DL-based indoor positioning, the RMSE results are presented in Tables 6,  
7 , and 8, while Figures 20, 21 , and 22 demonstrate the CDF results. Note that for 
AE, an SVR was utilised as a regressor for positioning estimation.

We observed that WiFi RTT-based fingerprinting utilising DL achieved an 
accuracy of below 1 metre in all testing conditions, except for AE+SVR 
method. The unsupervised learning process of AE failed to generate suffi
cient WiFi signal features for robust and reliable indoor positioning. But it 
was the best DL method for RSS-based fingerprinting among all the tested 
methods. It was observed that compared to the best ML-based indoor 
positioning systems, the best DL-based approaches included in this article 
could have an average improvement of 0.1 metres in positioning accuracy 

Figure 20. CDF of WiFi-based indoor positioning utilising deep learning with the building floor 
dataset. Note that in (a) and (b), the RTT+RSS line overlaps with the RTT line. And in (d), all lines 
overlap with each other.
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for all proposed datasets. Compared to MLP which was the most time- 
consuming method, CNN had a more efficient performance in positioning 
estimation. It was illustrated that converting the WiFi signal measures into 
images and then feeding them to CNN could achieve robust sub-metre 
level accuracy. Improvement in indoor positioning accuracy was not guar
anteed by introducing hybrid RTT-RSS measurements as input features. For 
CNN with min max scaled data, utilising both RTT and RSS signal measures 
had an impact on the accuracy for the building floor and the apartment 
datasets, but that was not always the case for the office room dataset. For 
AE+SVR method, using hybrid RTT-RSS as input data proved to have the 
best positioning accuracy.

It was illustrated in the CDF plots that an RTT-based system utilising DL 
methods could achieve an accuracy of below 1 metre up to 90% of the time 
in the complex building floor environment, compared with only 80% with ML 
algorithms. For the office room LoS scenario, DL-based fingerprinting achieved 
sub-metre level accuracy up to 100% of the time. And for the apartment dataset 
with a NLoS AP for most reference points, the CNN-based system achieved an 
accuracy of below 1 metre up to 92% of the time. But for the other three DL 

Figure 21. CDF of WiFi-based indoor positioning utilising deep learning for the office room 
dataset.
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methods, only MLP and DNN could achieve an accuracy of below 1 metre 85% 
of the time. It was observed from these results that NLoS conditions in a small- 
scale testbed had a huge impact on the positioning accuracy. The hybrid RTT- 
RSS-based system also had similar performance to the RTT-based one by show
ing its overlapping CDF curves. In comparison, systems using only RSS signal 
measures as input data got an accuracy of below 1 metre less than 60% of the 
time in the building floor dataset and the apartment dataset, and only 85% in 
the office room.

It was observed in the CDF curves that the DL-based fingerprinting achieved 
better, more robust, and promising positioning accuracy. Due to its perfor
mance of learning unique feature patterns from image-formatted data, CNN 
proved to be the best positioning algorithm among all methods included in this 
article. Even in large-scale complex indoor environments, CNN-based indoor 
positioning systems could get robust sub-metre level accuracy. We also 
observed that compared to a large-scale complex testbed and a small-scale 
LoS testbed, it was challenging for fingerprinting methods to achieve better 
positioning accuracy in the small-scale apartment testbed with an AP that had 
NLoS path to most reference points. As analysed above, the NLoS AP in a small- 

Figure 22. CDF of WiFi-based indoor positioning for utilising deep learning on the apartment 
dataset.
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scale dataset would generate similar RTT measures most of the time and made it 
difficult for ML-based fingerprinting. It was observed in the results that NLoS AP 
had a huge impact on WiFi-based indoor positioning systems.

6. Conclusions

In this article, we performed comprehensive experiments to analyse the proper
ties of WiFi RTT measurement. The experiments were carried out in three 
complex and realistic indoor environments.

We observed that different smartphones have different robustness in 
RTT and RSS measures with respect to the AP interference, phone place
ment, human blockage, heading directions, and NLoS scenario. Among 
those, human body blockage, the most common issue for real-world 
indoor positioning, had the greatest impact on the WiFi signal measures. 
A constant offset was observed in the RTT measurement, which also 
varied among smartphones and could be unpredictable in the NLoS 
situation. The building interior had a huge impact on the RTT measure
ment, making it less stable than RSS. Furthermore, the offset in smart
phone RTT measures should be considered carefully for indoor 
positioning.

To evaluate the baseline performances of machine learning, deep 
learning-based fingerprinting, and trilateration, three real-world datasets 
were collected and made publicly available for further research. We 
demonstrated that RTT-based fingerprinting achieved an accuracy of 
below 0.7 m with machine learning algorithms and of 0.6 m with deep 
learning methods, which is 107% better than RSS fingerprinting and 6 m 
better than RTT trilateration. We concluded that CNN achieved the high
est performance in different scenarios among all positioning algorithms 
investigated in this paper, while AE+SVR was the best method for RSS- 
based fingerprinting.

For future work, a robust AP LoS condition identification algorithm could 
greatly improve indoor positioning performance. The system could adopt 
different weights and positioning algorithms for LoS and NLoS WiFi signal 
measures. For better positioning accuracy with deep learning algorithms, 
a more detailed and thorough hyperparameter fine-tuning method would 
be required.
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