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A WiFi RSS-RTT indoor positioning system
using dynamic model switching algorithm

Xu Feng, Khuong An Nguyen, Zhiyuan Luo

Abstract— The advances in WiFi technology have en-
couraged the development of numerous indoor positioning
systems. However, their performance varies significantly
across different indoor environments, making it challeng-
ing in identifying the most suitable system for all scenar-
ios. To address this challenge, we propose an algorithm
that dynamically selects the most optimal WiFi positioning
model for each location. Our algorithm employs a Machine
Learning weighted model selection algorithm, trained on
raw WiFi RSS, raw WiFi RTT data, statistical RSS & RTT
measures, and Access Point line-of-sight information. We
tested our algorithm in four complex indoor environments,
and compared its performance to traditional WiFi indoor
positioning models and state-of-the-art stacking models,
demonstrating an improvement of up to 1.8 meters on
average.

Index Terms— Indoor fingerprinting, WiFi Round-Trip
Time, Model switching.

I. INTRODUCTION

WiFi fingerprinting has emerged as a leading approach for
infrastructure-free indoor positioning, thanks to its capability
to capture intricate nuances of the WiFi signal attenuation
in different complex locations within a building. However,
since fingerprinting heavily relies on the measurements of
the WiFi signal, similar WiFi measurements recorded at far
away location would result in a large prediction error. The
current popular WiFi signal metrics for indoor positioning
include Received Signal Strength (RSS) [1]–[3], Channel State
Information (CSI) [4]–[6], and Round-Trip Time (RTT) [7]–
[9]. Each of these measures has its own set of strengths and
weaknesses. For instance, RTT excels in clear line-of-sight
scenarios but lacks stability over a long time period, while
RSS performs optimally in heavily attenuated non-line-of-sight
conditions; CSI has the potential for fine-grained positioning,
but is not yet widely supported by most hardware.

To address this challenge, we propose a novel algorithm
designed to select the most optimal indoor positioning model
for each specific location. The idea of the proposed algorithm
is not to find a universally, applicable and efficient solution for
every location but, alternatively, to automatically recommend
the optimal location predictor. Our algorithm incorporates a
weighted model selection technique that dynamically assigns
varying weights based on the unique signal characteristics of
each location. Designed for implementation on heterogeneous
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devices, especially smartphones, our focus lies on utilising
the WiFi RSS and RTT signal measures as input features,
given that CSI is not yet readily available on commercial WiFi
Access Points (APs) and smartphones. The input features for
the proposed algorithm include the WiFi RSS and RTT signal
measures, the RSS and RTT statistical features, and the Line-
of-Sight (LOS) information [9].

The performance evaluation involves a comprehensive com-
parison against four traditional WiFi-based indoor position-
ing models, and state-of-the-art Machine Learning and Deep
Learning stacking algorithms, on four real-world testbeds
collected in diverse and complicated scenarios with varying
WiFi conditions, including Line-of-Sight (LOS), Non-Line-of-
Sight (NLOS), and mixed LOS-NLOS scenarios.

A. Paper’s contributions

Our contributions are as follows:
• We propose an algorithm designed to dynamically select

the most optimal indoor positioning model in real-time
for each location.

• We assess the performance of our algorithm on four
datasets collected from challenging real-world indoor
scenarios under different WiFi conditions (i.e., LOS,
NLOS and mixed LOS-NLOS).

• We openly share our indoor positioning datasets, metic-
ulously gathered in a campus building, containing both
WiFi RSS and WiFi RTT signal measures, as well as
correct LOS condition of all APs at every location.

The rest of the paper is organised as follows. Section II
introduces the related work in WiFi-based indoor positioning
and Section III formulates the WiFi-based indoor fingerprint-
ing problem. Then, the proposed weighted model selection
algorithm is described in Section IV. Section V discusses the
experimental setup and the results of the empirical evaluation.
Finally, Section VI concludes the paper.

II. RELATED WORKS

As one of the most widely used signal measures, WiFi RSS
plays a pivotal role in many fingerprinting-based systems [10]–
[15]. In [16], particle swarm optimisation (PSO) was applied to
enhance RSS-based performance. Mahalanobis distance, rather
than Euclidean distance, was utilised by [17] to make position-
ing estimations based on RSS fingerprinting. To mitigate the
disturbance of RSS measures, [18] projected the RSS features
into the improved probabilistic linear discriminant analysis
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(PLDA) latent space to achieve an average accuracy of 1.38
metres.

Introduced by the IEEE 802.11n standard, CSI has received
widespread attention in indoor positioning [5], [19]–[21]. The
system in [22] used a combined CNN and LSTM network
for CSI fingerprinting. To mitigate the instability of RSS
signal measures, a hybrid method using RSS and CSI was
proposed by [23] based on Weighted K-Nearest Neighbours
(WKNN). In [24], CRISLoc, a CSI fingerprinting system, was
proposed by employing transfer learning and an enhanced
KNN. Furthermore, a novel CSI signal fingerprinting method
was proposed in [25] to achieve decimetre-level accuracy.
However, the implementation of these CSI-based systems on
commercial smartphones remains a major challenge.

Recently introduced in the IEEE 802.11-2016 standard, RTT
promised to deliver sub-metre level accuracy for indoor posi-
tioning [8], [26]. The authors in [8] proposed a particle filter-
based indoor positioning algorithm. A novel method proposed
by [27] fused RTT and smartphone microelectromechanical
sensors for accurate indoor quadrotor localisation. In [28], an
RTT compensation distance network (RCDN) and a region
proposal network (RPN) were utilized to address the challenge
of NLOS. To better enhance the performance, a fusion method
of UWB, WiFi RTT and WiFi RSS was developed by [29].
The authors of [30] presented a tightly coupled fusion platform
using RTT, RSS and data-driven pedestrian dead reckoning
(PDR) to achieve an accuracy of 0.39 metres. However for
a complex indoor environment, the best possible positioning
model for each location remains a research question. There-
fore, a weighted best positioning model selection algorithm is
proposed to address this challenge.

To enhance the performance of indoor positioning systems,
various hybrid approaches combining multiple technologies
were proposed in the literature. In [31], [32], optimal AP
selection using Particle Swarm Optimization was leveraged
to enhance the perceptibility of WiFi-based indoor localiza-
tion, enabling scalable solutions with reduced maintenance
costs. The proposed feature-based ensemble model, trained
on selected AP subsets, achieves high accuracy (86%–96%)
and a significant reduction the number of APs (50%–65%),
yielding a mean absolute error of 2.68 metres. The authors in
[33] presents an indoor pedestrian location scheme utilizing
UWB/PDR and Floor Map data. The proposed approach
includes a robust UWB positioning algorithm addressing ill-
conditioned positions, a heading angle-computed strategy for
PDR mapped to Floor Map directions, and an Extended
Kalman Filter fusion for UWB/PDR/Floor Map, demonstrat-
ing reliable decimeter-level positioning in the experimental
scenarios. A Kalman filter was applied by [34] to combine
PDR system using accelerometer, gyroscope, magnetometer
and WiFi RSS trilateration. By analyzing WiFi signal strength
to overcome PDR drift errors and using PDR results to com-
pensate for WiFi signal fluctuations, the proposed algorithm
demonstrated high position accuracy, achieving an improved
average localization accuracy of 1.6 meters. UWB, GPS and
magnetic, angular, gravity and gravity were fused in [35] by
a weighted fusion algorithm. In [36], [37], 2.4G and 5G WiFi
RSS measures were used by both SVM and Capsule network

in a fuse learning method for location estimation. The system
proposed by [38] used an error state extended Kalman filter
to fuse a 5G network CSI and magnetometer based back
propagation neural network, and a visual inertial odometry
for indoor localisation.

Ensemble learning, leveraging multiple base models, was
proposed to achieve more robust indoor positioning perfor-
mance. An ensemble filter was leveraged by [39] to generate
final positioning predictions from Bluetooth Low Energy based
KStar, Random Forest and a Decision Tree. The system in [40]
introduced a crowdsourcing approach called AAIFU (Auto-
matic Altered APs Identification and Fingerprints Updating).
AAIFU adopted a Gradient Boosting Decision Tree (GBDT) to
make WiFi RSS fingerprinting based on crowdsourcing radio
map. The authors in [41], [42] proposed a weighted ensemble
classifier based on Dempster–Shafer belief theory to efficiently
handle diverse contexts, defined by smartphone configurations
and temporal signal variations. Their real-life experiments
on JUIndoorLoc and UJIIndoorLoc datasets demonstrated the
effectiveness of the technique, achieving up to 98% localiza-
tion accuracy in scenarios with varying training and testing
conditions. To achieve better positioning accuracy on smart-
phones, [43] proposed a deep learning ensemble classifier that
utilised three magnetic based neural networks’ predictions and
the information from accelerometer and gyroscope. WiFi CSI
measure was leveraged by [44] to train multiple base models.
They employed a stacking ensemble broad learning system.
Then, the use of a bootstrapping method for training set con-
struction, coupled with the advantages of the broad learning
system as a base learner, resulted in improved accuracy in both
LOS and NLOS environments. The method proposed by [45]
combined DNN features and GBDT features for more accurate
WiFi fingerprinting.

Stacking is a specific technique within ensemble learning
that leverages the positioning predictions from different pri-
mary learners as the input to train a secondary learner for
final estimation. The authors in [46] introduced TreeLoc, an
improved localization method for wireless indoor localization,
focusing on RSS and utilizing ensemble learning trees. The
method, employing Decision Tree Regressor (DTR), Ran-
dom Forest Regression (RFR), and Extra Tree Regressor,
demonstrated superior performance in position estimation for
indoor environments. TreeLoc achieved an RMSE of 8.79 for
the x-coordinate and 8.83 for the y-coordinate. To maintain
accuracy, [47] proposed a WiFi-based stacking framework that
leveraged the predictions from AdaBoost, Random Forest, and
Kernel Ridge to train a secondary learner for stack model pre-
dictions. A robust and time-independent WiFi fingerprint was
generated by learning the reconstruction distribution from raw
and artificially noised WiFi signals. Leveraging the powerful
representation capabilities of MLP (Multi-Layer Perceptron),
the authors built a regression model that accurately mapped
the extracted features to corresponding locations.

The system proposed by [48], [49] used CNN, SVM, ELM,
and XGBoost as the primary learner and stacked a XGBoost as
the secondary learner for WiFi fingerprinting positioning. To
mitigate the “dimensional disaster” caused by hundreds of APs
in WiFi fingerprint databases, the authors employed a random
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forest for feature selection and an improved deep autoencoder
for extraction. Multiple machine learning models, including
SVM, XGBoost, and ELM, were fused using a Stacking model
to deliver a floor prediction accuracy of 95.13%. A detailed
comparison of the related works is shown in Table I.

However, most methods in the literature so far have only
focused on fusing different technologies or using multiple base
models to make the final prediction. This process involves a
considerable computational demand and highly relies on multi-
ple pre-installed signal transmitters. To address this limitation,
we propose a dynamic model switching algorithm for WiFi
indoor positioning that only requires existing commercial APs.

III. PROBLEM FORMULATION

To formulate the problem, the indoor environment is divided
into a total number of N locations. At each location Pi, (i =
1, 2, . . . , N), a fixed number of WiFi scans is performed to
collect the RSS and RTT measurements from J number of
nearby APs. The fingerprinting database is defined as:

X = {RSSi1, . . . , RSSiJ , RTTi1, . . . , RTTiJ}Ni=1 (1)

where i is the indicator of a specific location, and J is the
total number of APs in the environment. To provide a more
comprehensive understanding of the WiFi signal propagation,
statistical features (i.e., Mean (µ), median (Med), standard
deviation (σ), Skewness (S) and Kurtosis (K)) of WiFi RSS
and RTT signal measures are extracted and merged with X to
form a new input feature set, defined as:

X = {µ,Med, σ,K,S, X} (2)

In the proposed algorithm, several popular WiFi indoor
positioning models are leveraged to perform preliminary po-
sitioning estimations based on the input WiFi signal features.
The label indicating the ground truth location of each location
is defined as a vector

Yloc = {yi}Ni=1 (3)

where yi contains the real-world coordinates of the ith loca-
tion. The positioning estimation from these models is defined
as:

Yloc test = {yi1, yi2, . . . , yiM}Ni=1 (4)

where M is the total number of preliminary indoor positioning
models.

Next, the best positioning model bi for each location Pi

is determined by comparing Yloc test to Yloc. Then, the orig-
inal WiFi RSS and RTT signal measure and their statistical
features X and the preliminary positioning results Yloc test

are combined altogether as input features for the weighted
model selection algorithm. The hidden correlations between
X and Yloc test, and Bpriori are learned by a random forest
classifier (RFC) in the weighted model selection algorithm,
where Bpriori = {bi}Ni=1, bi ∈ {1, ...,M}.

When the user at an unknown location reports their
real-time new WiFi signal measurements Xtest =
{RSStest1, . . . , RSStestJ , RTTtest1, . . . , RTTtestJ}, our
model automatically selects the features with the strongest
correlations and predicts the optimal indoor positioning model

btest for the test location. Finally, the positioning estimation
of the user’s current location is made by the selected model
btest.

IV. SYSTEM ARCHITECTURE

To automatically select the best possible location predictor
for each location in the environment, our system consists
of 5 steps (see Figure 1). They are Data Preprocessing,
Data Preparation, Preliminary Positioning, Weighted Model
Selection and Performance Validation.

• Step 1: We preprocess the raw WiFi signal data by firstly
removing outliers in the RSS and RTT signal measures.
Next, we replace the missing WiFi RTT and RSS mea-
surements with default values, indicating that such AP
was not visible at the current location. Then, we utilise
One-Hot Encoding to reformat the LOS information of
all APs for the current location.

• Step 2: Statistical feature extraction is leveraged to pro-
duce statistics of the WiFi RSS and RTT measures.

• Step 3: Four popular indoor positioning models are lever-
aged to deliver the preliminary positioning estimations.
They are WiFi RTT trilateration, WiFi RSS fingerprinting,
WiFi RTT fingerprinting, and hybrid RSS-RTT finger-
printing.

• Step 4: The outputs from the previous step are merged
with original WiFi RSS and RTT signal measures, WiFi
RSS and RTT statistical features, and LOS conditions of
all APs to create a new set of input features. Then, the
input features are fed into the weighted model selection
algorithm where the most informative features to deter-
mine the most suitable positioning model are selected.

• Step 5: Given a new WiFi sample reported at an unknown
location, a feature preprocessing method is used for data
cleaning. Then, the preprocessed model automatically
selects the best positioning model, and the final location
estimation is generated.

We will discuss each step in detail in the following sections.

A. Data preprocessing and data preparation
In this initial preprocessing step, we preprocess the raw

WiFi signal data to remove outliers, and fill in missing WiFi
RTT and RSS measurements with default values of -200 dBm
for RSS entries and 100 m for RTT entries, to indicate that
the corresponding AP was not visible at the current location.

To streamline the data representation, One-Hot Encoding
technique was employed to reformat the LOS conditions for
all APs present in the given location. Since LOS condition is
critical to WiFi based indoor positioning performance, inte-
grating such information provides more informative features
for the best model selection. The impact of NLOS condition
to the WiFi RSS and RTT signal measures are shown in
Figure 2 [9]. A snapshot of the preprocessed input WiFi
signal measurements with LOS conditions of all present APs
is shown as Table II (a) and (b).

Next, to gain a comprehensive insight into the WiFi prop-
agation characteristics, a feature extraction method was lever-
aged to generate the statistical features from the WiFi RSS and
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TABLE I: Comparison of the performance of notable work in combining, ensemble and stacking indoor positioning systems.

Reference Input Features Performance Description
[31] WiFi RSS Radio Map 2.68 m The system utilized a feature-based ensemble model, for

indoor positioning.
[33] UWB, PDR, Floor Map 0.15 m, in X direction The system integrated a robust algorithm, a heading angle-

computed strategy, and an Extended Kalman Filter fusion
algorithm.

[34] WiFi RSS, PDR 1.6 m The system utilized a sensor fusion framework that combined
WiFi signal strength and PDR data to address signal fluctua-
tions and drift errors.

[35] GPS, UWB, Magnetic
field

3.2 m The proposed system employed a weighted fusion algorithm
to seamlessly position in cross-region and complex environ-
ments.

[36] WiFi RSS 0.99 m The system combined WiFi 2.4G and 5G signals through
an SVM model and capsule networks to improve indoor
localization accuracy.

[38] 5G CSI, geomagnetism,
VIO

0.61 m The system used an error back propagation neural network
and an error state extended Kalman filter for signal combina-
tion.

[39] BLE beacon-based data 2 m The study utilised an ensemble filter to achieve a more
accurate consumer localization.

[40] WiFi RSS 2.6 m The system introduced a crowdsourcing indoor positioning
approach based on ensemble learning.

[41] WiFi RSS statistics 98%, location estimation The system introduced a weighted ensemble classifier effec-
tively for handling context heterogeneity caused by varying
smartphone configurations and temporal signal variations.

[43] magnetic field 2.23 m The system utilized a deep neural network-based ensemble
classifier to address device heterogeneity in indoor localiza-
tion.

[44] WiFi CSI 1.15 m The system was a stacking ensemble broad learning localiza-
tion system using channel state information as a fingerprint.

[45] WiFi RSS 0.77 m The system employed a feature extraction algorithm to ad-
dress the volatility and high-dimensional sparseness of WiFi
data, and integrated these features to a hybrid model.

[47] WiFi RSS 4.24 m The system utilized an SDAE-based feature extraction method
to handle dynamic WiFi signal fluctuations and sparsity,
generating robust and time-independent WiFi fingerprints.

[48] WiFi RSS 95.13%, floor identifica-
tion

The system employed a feature selection process with a
random forest algorithm, followed by an improved deep
autoencoder for feature extraction.

RTT measures. Mean (µ), median (Med), standard deviation
(σ), Skewness (S) and Kurtosis (K), which were reported to be
the most informative features for LOS identification [50], are
computed from the raw input WiFi RSS and RTT measures,
as follows:

µ =

∑K
k=1 xk

K
(5)

µm =

∑K
k=1 (xk − µ)m

K
(6)

σ =
√
µ2 (7)

S =
µ3

σ3
(8)

K =
µ4

σ4
(9)

where xk is the RSS or RTT measurements collected at a
specific location, and K is the total number of data samples.
µm denotes the mth central moment. Intuitively, Kurtosis
measures the peakedness of the measurements distribution,
describing the tails’ relative weight to the distribution’s center,
and Skewness quantifies the asymmetry of the measurements
distribution, indicating whether the data distribution is skewed
to the left or right. A snapshot of the statistical features of the
input WiFi signal measurements is shown as Table II (c) and

(d). Then, the statistical features of the input WiFi RSS and
RTT data were merged together with the preprocessed WiFi
RSS and RTT signal measures, and LOS conditions of all
present APs, and were fed into the next step for preliminary
positioning estimation evaluation.

B. Preliminary positioning

Following on from the preprocessing and preparation step,
we employ 4 popular indoor positioning models to derive
the preliminary position estimations. They are WiFi RSS
fingerprinting, WiFi RTT fingerprinting, hybrid RSS-RTT
fingerprinting, and WiFi RTT trilateration techniques. This
diverse set of WiFi indoor positioning models provide
preliminary positioning results to be leveraged in the
next step for the best positioning model selection, namely
{RSSx, RSSy, RTTx, RTTy, RTT +RSSx, RTT +RSSy,
T rilaterationx, T rilaterationy}.

C. Weighted model selection algorithm

The preliminary positioning estimations from the popular
WiFi indoor positioning models, as described in the previous
step, are merged together with WiFi signal measures and sta-
tistical features and served as input for our innovative weighted
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Fig. 1: The architecture of our proposed system. Note that LOS information was not incorporated in both training and testing
phases.

model selection algorithm. Figure 1 and Algorithm 1 provide
a comprehensive overview of the weighted model selection
process, which encompasses weight initiation, weighted fea-
ture set generation, importance-based weights updater, and the
best feature selection for final model switching. The selected
feature set will be utilised for choosing the most optimal
positioning model for any new WiFi test sample.

The selection and refinement of the most informative feature
set are integral to our algorithm, optimising efficiency and
accuracy for diverse locations. It mitigates high dimensionality
challenges, ensures computational efficiency, and enhances
model performance by focusing on the most informative
features. For example, different patterns hidden in the input
WiFi original signal and statistical features have a strong

correlation to choosing between RTT fingerprinting and RSS
fingerprinting for a specific location where most APs were
under NLOS conditions. This adaptability allows the algorithm
to cater for location-specific characteristics in complex indoor
spaces, leading to robust model selection and improved gen-
eralisation. Overall, this strategic approach balances accuracy
and computational efficiency.

Upon the integration of the preliminary positioning results,
the preprocessed WiFi RSS and RTT signal measures, and
WiFi signal statistical features into the weighted model se-
lection algorithm, the initial weights are systematically es-
tablished for each input feature, signifying their respective
significance in determining the user’s location. This weight
initiation process employs the mean absolute error (MAE)
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(a) WiFi RSS signal distribution under LOS and NLOS condi-
tions.

(b) WiFi RTT signal distribution under LOS and NLOS condi-
tions.

Fig. 2: The WiFi RSS and RTT signal measures vary significantly under LOS and NLOS scenarios. The smartphone was set
3 metres away from the WiFi AP. A person was standing between the smartphone and the AP to create the NLOS condition.
Under NLOS condition, WiFi RSS measurement became unstable and weaker drastically, while WiFi RTT measurement became
larger, more unreliable and further away from the ground truth measure.

as the metric to evaluate the performance of the preliminary
models obtained in the prior step. A smaller MAE indicates a
more accurate model. The weight (w(m)) assigned to the mth

model (m ∈ {1, 2, . . . ,M}) is defined as:

w(m) =
E(m)∑M
i=1 E

(i)
(10)

E(m) =
n

|Y (m)
loc test − Yloc|

(11)

where n indicates the length of the ground truth coordinates
of each location Yloc, M is the total number of positioning
methods, Y (m)

loc test and w(m) are the positioning performance
and the weight of the features adopted by the mth model,
respectively.

Following the weight initiation process, each feature re-
ceives a weight denoting how strong its correlation is with
the ground truth label. A subsequent step involves the gen-
eration of a new feature set, which includes the preliminary
positioning model estimations, preprocessed WiFi RSS and
RTT signal measures, WiFi signal statistical features, and their
respective weights for the importance-based weights updater.
The primary aim of the weighted model selection algorithm is
to choose the most informative features for identifying the
optimal positioning model for a new WiFi sample. Within
the importance-based weights updater, the significance of
each feature in predicting the best positioning model was
assessed through Permutation Importance and Mean Decrease
in Impurity, as detailed below.

Permutation Importance is a robust technique employed
in feature importance assessment for machine learning models.
It operates by evaluating the impact of individual features
on a model’s performance through systematic permutation
of feature values. The procedure involves randomly shuffling
the values of a specific feature and observing the consequent

change in the model’s performance metric, such as accuracy
or mean absolute error. In every iteration within the Weighted
Model Selection algorithm, the feature importance w

(m)
perm[x]

of a specific feature x in deciding the best possible positioning
model for each reference point (RP) is defined as:

w(m)
perm[x] = Score–Scorex (12)

Score = Classifier(Xweigted, Bpriori) (13)
Scorex = Classifier(Xweigted shuffled, Bpriori) (14)

where m indicates the mth positioning model in the prelimi-
nary positioning step, Classifier is the classifier trained for
the best positioning model selection, Xweigted and Bpriori

indicate the input WiFi features and the ground truth best
positioning model label to the classifier, Xweigted shuffled is
the input feature set where feature x is randomly shuffled,
and Score and Scorex evaluate the performance of the
original and shuffled input feature set. By comparing the
model’s original performance with the performance under
various permutations, it quantifies the significance of each
feature in influencing the model’s predictions. The feature
importance w

(m)
perm[x] provides a comprehensive understanding

of how informative and crucial a specific feature is, aiding
in the identification of best features contributing to the best
positioning model prediction for each location.

Figure 3 depicts the permutation importance analysis ap-
plied to the input feature set for optimal positioning model
prediction. Features contributing positively to the prediction
accuracy will be assigned higher importances and selectively
incorporated by the proposed algorithm. The magnitude of
positive importance corresponds directly to the significance of
each feature within the weighted model selection algorithm.
Larger positive importances indicate heightened importance,
emphasising the influential role of specific features in the
algorithm’s decision-making process.
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(a) Permutation importance of the statistical WiFi
input of lecture theatre testbed.

(b) Mean decrease in impurity of the statistical
WiFi input of lecture theatre testbed.

(c) Permutation importance of the statistical WiFi
input of office testbed.

(d) Mean decrease in impurity of the statistical
WiFi input of office testbed.

(e) Permutation importance of the statistical WiFi
input of corridor testbed.

(f) Mean decrease in impurity of the statistical
WiFi input of corridor testbed.

(g) Permutation importance of the statistical
WiFi input of floor testbed.

(h) Mean decrease in impurity of the statistical
WiFi input of floor testbed.

Fig. 3: The importance of the top 10 informative features in the input feature set from all four dataset. Larger importance
means that the feature has a positive contribution to the final positioning prediction.

Mean Decrease in Impurity (MDI) is a popular metric
for ensemble decision tree frameworks like Random Forests,
to assess the significance of the input features. It quantifies
the role of each feature in enhancing the model’s prediction
performance by evaluating its impact on reducing impurity or
disorder across all decision trees in the ensemble. Impurity
denotes the level of uncertainty or randomness inherent in the
dataset. The MDI score ScoreMDI of feature x for random

forest is defined as:

ScoreMDI,x,i =

ni∑
k=1

pk,i ·∆Ik,i(x) (15)

ScoreMDI =
1

NT

NT∑
i=1

ScoreMDI,x,i (16)

where pk,i is the proportion of training data that reach node
k in tree i, ni is the number of nodes in i, ∆Ik,i(x) is
the decrease in impurity caused by splitting on feature x at
node k in tree i, NT is the total number of trees in the



8 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION

TABLE II: A snapshot of our WiFi fingerprinting dataset.

(a) WiFi RSS data samples.

X Y AP1 RSS
(dBm)

AP2 RSS
(dBm)

. . . AP5 RSS
(dBm)

LOS APs

0.6 1.2 -51 -70 . . . -81 1 2 4
1.2 0.0 -56 -68 . . . -200 3 4
. . . . . . . . . . . . . . . . . . . . .
1.8 1.2 -61 -200 . . . -72 2 3 4

(b) WiFi RTT data samples.

X Y AP1 RTT
(mm)

AP2 RTT
(mm)

. . . AP5 RTT
(mm)

LOS APs

0.6 1.2 1194 6307 . . . 16119 1 2 4
1.2 0.0 2754 7391 . . . 100,000 3 4
. . . . . . . . . . . . . . . . . . . . .
1.8 1.2 1561 100,000 . . . 15132 2 3 4

(c) WiFi RSS statistical features of AP1.

X Y µ
(dBm)

σ
(dBm)

Med
(dBm)

K S

0.6 1.2 -50.8 0.4 -51.0 3.3 1.5
1.2 0.0 -57.6 0.5 -58.0 1.2 0.4
. . . . . . . . . . . . . . . . . . . . .
1.8 1.2 -64.0 1.4 -64.0 1.7 0.0

(d) WiFi RTT statistical features of AP1.

X Y µ
(mm)

σ
(mm)

Med
(mm)

K S

0.6 1.2 1206.4 86.3 1154.0 1.3 0.3
1.2 0.0 2643.8 42.9 2644.0 1.6 0.2
. . . . . . . . . . . . . . . . . . . . .
1.8 1.2 1548.2 31.8 1533.0 1.4 0.2

Random Forest, ScoreMDI is the overall MDI importance
score of feature x in the forest. An example of the MDI
importance of the input feature set to the best positioning
model selection is shown in Figure 3 (b) and (d). Features
consistently contributing to impurity reduction exhibit elevated
MDI values, underscoring their pivotal role in augmenting the
model’s accuracy. Essentially, MDI gives us valuable insights
into the correlation between the diverse features and the
ground truth label.

In the importance-based weight updater, the importance
w

(m)
perm[x] of each input feature x was utilised to update the

initial weight w(m) from the weights initiation step. Only the
features that gain higher positive importance in predicting the
best positioning model for each RP are given higher weights
in the weights updater step. Finally, an updated feature set is
selected for best model identification.

In the performance validation step, a user at an unknown
location reported a new WiFi test sample containing both
WiFi RSS and RTT signal measures. After the data prepro-
cessing and statistical feature extraction, the reformatted WiFi
signal inputs were fed into the model switching algorithm.
By integrating the final feature set decided by Weighted
Model Selection, the algorithm automatically decided the best
positioning model for the user and generated the positioning
estimation accordingly.

V. EXPERIMENTAL SETUP AND EMPIRICAL RESULTS

This section validates the performance of our proposed
algorithm on four publicly available datasets collected from

Algorithm 1 Our proposed weighted model selection algo-
rithm.
Input: X: input WiFi RSS, RTT measure, Xtest: test samples

Yloc: ground truth coords label,Models: positioning models,
MAE: Mean Absolute Error, RFC: Random Forest Classifier.

Output: X: best feature set for dynamically switch models
1: for x in X do ▷ x includes both RTT and RSS measures
2: µ←Mean(x)
3: Med←Median(x)
4: σ ←Standard Deviation(x)
5: S ←Skewness(x)
6: K ←Kurtosis(x)
7: end for
8: X ← {µ,Med, σ,K,S, X}
9: M ← |PreliminaryPositioningModels|

10: for m = 1, 2, . . . , M do
11: model← mth model in Models
12: Y

(m)
loc test ← model(X , Yloc)

13: E(m) ← Len(Yloc)/(|Y
(m)
loc test − Yloc|)

14: end for
15: for m = 1, 2, . . . , M do
16: w(m) ← E(m)/

∑M
m=1 E

(m)

17: end for
18: W ←

∑M
m=1 w

(m)

19: Xweighted ←WeightedFeature(X , Yloc test,W )

20: Bpriori ← argmin[MAE({Y (m)
loc test}

M
m=1, Yloc)]

▷
Bpriori indicates the best model m for each reference point (RP)

21: for m = 1, 2, . . . , M do
22: Score = RFC(Xweigted, Bpriori)

23: Initialise empty array w
(m)
perm

24: for x in Xweigted do
25: feature temp← x
26: Xweigted[x]← shuffle(x)
27: Scorex ← RFC(Xweigted, Bpriori)
28: Xweigted[x]← feature temp

29: w
(m)
perm[x]← Score− Scorex

30: end for
31: w(m) ←WeightUpdate(w(m), w

(m)
perm)

32: end for
33: W ←

∑M
m=1 w

(m)

34: X← GenerateBestFeatureSet(Xweighted,W )
35: return X

real-world indoor scenarios with varying LOS and NLOS
conditions. We first introduce the details of the datasets. Then,
we compare the proposed algorithm with state-of-the-art WiFi
based indoor positioning models, and Deep Learning ensemble
and stacking algorithms.

A. Testbeds
To assess the performance of our proposed algorithm and

its robustness across diverse scenarios, we collected 4 real-
world indoor datasets: a long corridor, a lecture theatre, an
office room, and a whole building floor. The corridor testbed,
spanning over 35 × 6 m2, created a NLOS scenario where
no location had a LOS path to any APs (see Figure 4(a)). In
contrast, the lecture theatre testbed covered more than 15 ×
14.5 m2, constituted a LOS environment where all RPs had a
clear LOS path to all APs (see Figure 4(b)). The office room,
occupying an area of 18 × 5.5 m2, featured a mixture of LOS
and NLOS conditions, ensuring that each RP had at least one
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LOS AP (see Figure 4(c)). The whole building floor, with
an area of 92 × 15 m2 is a complicated real-world scenario
with both LOS and NLOS conditions (see Figure 4(d)). Each
testbed was meticulously divided into 0.6 × 0.6 m2 grids, when
collecting the WiFi signals to ensure non-overlapping amongst
training and testing locations.

To ensure the generalisation and transferability of the
proposed algorithm, we used off-the-shelf commercial WiFi
APs and an LG G8X ThinQ smartphone to conduct the
experiments. At each location, a total number of 75 WiFi
scans (150 for the floor dataset) were performed. For tri-
lateration purposes, the accurate 3D location of all APs
were carefully recorded and verified. The ground-truth label
and the LOS conditions of all APs at each location were
manually recorded and verified by two human testers. A
summary of the four datasets is shown in Table III. They
are also publicly available at https://github.com/
Fx386483710/Dataset_for_Model_Selection.

TABLE III: A summary of our 4 testbeds.

Data features Lecture Theatre Office Corridor Floor
Testbed (m2) 15 × 14.5 18 × 5.5 35 × 6 92 × 15
Grid size (m2) 0.6 × 0.6 0.6 × 0.6 0.6 × 0.6 0.6 × 0.6
Number of RPs 120 108 114 642
WiFi Samples
per RP
recorded

75 75 75 150

WiFi Samples
per RP selected

60 60 60 120

All samples 7,200 6,480 6,840 77,040
Training
samples

5,400 4,860 5,130 57,960

Testing samples 1,800 1,620 1,710 19,080
Signal measure RTT, RSS RTT,

RSS
RTT,
RSS

RTT,
RSS

WiFi condition LOS LOS-
NLOS

NLOS LOS-
NLOS

B. Evaluation metric
Given the impact of the complex indoor structures on the

WiFi signals, the selection of the most effective indoor posi-
tioning model becomes location-dependent. To investigate the
optimal positioning estimator for each location, we conducted
experiments across all four datasets with 4 models: WiFi
RSS fingerprinting, WiFi RTT fingerprinting, hybrid RSS-RTT
fingerprinting, and RTT trilateration. Employing the root mean
square error (RMSE) as the evaluation metric, we assessed
the average disparity between the positioning estimation and
the ground truth co-ordinate. RMSE quantifies the average
magnitude of differences between predicted values and actual
values, providing a measure of the positioning model’s overall
performance, defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (17)

where n is the number of test samples, yi represents the actual
coordinates of the testing location, ŷi represents the predicted
coordinates. It is worth noting that our testing and training
locations were not overlapped.

C. Individual model performance results

Table IV provides an overview of the results, highlighting
the best positioning model for each location.

In our observations across all four testbeds, RTT fingerprint-
ing demonstrated superior performance, outperforming other
models in more than 36% of the locations with WiFi RSS
and RTT signal measures as input features (see Figures 5 and
6). Despite the sub-metre accuracy claim, RTT trilateration
did not perform well in most locations. Surprisingly, in the
mixed LOS-NLOS environments of the office, corridor and
building floor testbeds, RSS fingerprinting surpassed RTT
fingerprinting in certain locations. These findings shed light on
the nuanced behaviour of different positioning models across
diverse indoor scenarios.

However, when investigating the positioning estimations
based on WiFi statistical features, such as Mean, median,
standard deviation, Skewness and Kurtosis, RTT fingerprinting
performance decreased. In the corridor testbed where there was
no LOS AP at all, statistical feature based RSS-RTT finger-
printing surpassed RTT fingerprinting by 9 locations, reaching
54 out of 114 locations. More interestingly, RTT trilateration
based on mean RTT measurements had greatly improved its
performance in the office testbed and building floor test bed
(mixed LOS-NLOS scenarios), excelling in 20 more locations
compared to the original WiFi measurements. We observed
that incorporating the average value of RTT signal measures
significantly contributed to the positioning accuracy of RTT
trilateration in this mixed LOS-NLOS environment. Moreover,
employing identical models with different WiFi input signal
features led to variations in the best positioning model results
for the same locations. These findings strongly suggested that
there is not a universally superior positioning model across all
scenarios. Therefore, the overall positioning accuracy could
be improved by dynamically select the model based on the
specific characteristics of each location.

D. Model selection performance results

To evaluate the performance of our proposed model selec-
tion algorithm, we compare it with state-of-the-art Machine
Learning and Deep Learning ensemble methods.

In-depth performance evaluation against state-of-the-art
methods, specifically joint multi-task stacked denoising auto-
encoder (JMT-SDAE) [45], random forest + SAE + Stacking
(RS-stacking) [48], and the novel weighted ensemble classifier
(NWEC) proposed by [41], revealed compelling outcomes, as
detailed in Table V. Note that both RTT and RSS features were
utilised by all the state-of-the-art models in the comparison.
The comparative analysis in the office testbed, visualised
through the cumulative distribution functions in Figure 7,
showcased the superior performance of our algorithm.

The proposed algorithm employed a machine learning
weighted model selection algorithm, trained on raw WiFi RSS,
WiFi RTT data, statistical RSS and RTT measures, and pre-
liminary positioning estimations. Unlike state-of-the-art mod-
els that produced positioning predictions from multiple base
classifiers’ results, the essence of the proposed method lies in
dynamically selecting the optimal WiFi positioning model for

https://github.com/Fx386483710/Dataset_for_Model_Selection
https://github.com/Fx386483710/Dataset_for_Model_Selection


10 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION

(a) The layout of the corridor testbed. This is a NLOS scenario. (b) The layout of the lecture theatre testbed.
This is a LOS scenario.

(c) The layout of the office testbed. This is a mixed LOS-NLOS scenario.

(d) The layout of the whole building floor testbed. This is a mixed LOS-NLOS scenario.

Fig. 4: The layouts of our 4 real-world indoor testbeds. The green dots indicate the APs’ location. All WiFi measurements
were collected in the grey area.

TABLE IV: The number of locations in which the positioning model performed best. It was interesting to observe that there
was no clear dominant model for all locations.

(a) Results based on original WiFi RSS and RTT signal measures.

Positioning model Lecture Theatre Office Corridor Floor
(120 locations) (108 locations) (114 locations) (642 locations)

RTT trilateration 19 1 0 48
RSS fingerprinting 3 16 15 78
RTT fingerprinting 56 55 53 274
RSS-RTT fingerprinting 42 36 46 242

(b) Results based on WiFi RSS and RTT statistical features.

Positioning model Lecture Theatre Office Corridor Floor
(120 locations) (108 locations) (114 locations) (642 locations)

RTT trilateration 18 21 0 65
RSS fingerprinting 6 15 15 46
RTT fingerprinting 56 43 45 232
RSS-RTT fingerprinting 40 29 54 299

each location. The preliminary positioning estimations from
basic positioning and fingerprinting models, and statistical

features from WiFi RTT and RSS were utilised as input to the
weighted model selection algorithm to predict the best WiFi
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(a) The best positioning model for each RP in the corridor testbed based on the original WiFi signal
measures. RTT fingerprinting excelled in 53 out of 114 locations.

(b) The best positioning model for each RP in the corridor testbed based on the WiFi statistical
features. RSS-RTT fingerprinting excelled in 54 out of 114 locations.

(c) The best positioning model for each RP in the lecture
theatre testbed based on original WiFi signal measures.
RTT fingerprinting excelled in 56 out of 120 RPs.

(d) The best positioning model for each RP in the lecture
theatre testbed based on WiFi statistical features. RTT
fingerprinting excelled in 56 out of 120 RPs.

(e) The best positioning model for each RP in the office testbed based on original WiFi signal
measures. RTT fingerprinting excelled in 55 out of 108 RPs.

(f) The best positioning model for each RP in the office testbed based on WiFi statistical features.
RTT fingerprinting excelled in 43 out of 108 RPs.

Fig. 5: The best positioning model for each location based on the original WiFi RSS and RTT signal measures and the WiFi
statistical features. RSS fingerprinting based on the original measures are in orange while that based on statistical features are
in red.
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(a) The best positioning model for each RP in the floor testbed based on original WiFi signal
measures. RTT fingerprinting excelled in 274 out of 642 RPs.

(b) The best positioning model for each RP in the floor testbed based on WiFi statistical features.
RTT fingerprinting excelled in 232 out of 642 RPs.

Fig. 6: The best positioning model for each location based on the original WiFi RSS and RTT signal measures and the WiFi
statistical features for floor dataset. RSS fingerprinting based on the original measures are in orange while that based on
statistical features are in red.

positioning model for testing locations. Consequently, only the
optimal basic positioning model is utilised at the final stage for
estimation. This approach drastically reduces the complexity
in generating the final positioning estimation while ensuring
accuracy.

TABLE V: Performance comparison of the RMSE (m) of
different models.

Model Name Lecture
Theatre

Office Corridor Floor

RSS-RTT finger-
printing

0.612 0.729 0.612 0.989

RTT fingerprint-
ing

0.559 0.718 0.704 0.988

RSS fingerprint-
ing

2.356 1.423 1.315 1.730

Trilateration 1.176 1.073 412.257∗ 7.503
JMT-SDAE 0.716 0.857 0.705 1.032
RS-stacking 0.724 0.824 0.672 0.967
NWEC 0.663 0.781 0.599 0.965
Proposed method 0.570 0.698 0.569 0.935
∗Note that RTT measures from unseen APs were replaced by 100 metres.

Notably, our algorithm exhibited a remarkable up to 32%
improvement in positioning estimation accuracy over state-
of-the-art stacking algorithms. Additionally, it outperformed
the standard WiFi RSS fingerprinting method by achieving a
notable 1.8 meters reduction in RMSE. To assess the time
efficiency of various algorithms in making predictions, we
conducted evaluations using the entire building floor dataset.
Our proposed algorithm demonstrated superior speed, requir-
ing only 0.226 seconds, in stark contrast to JMT-SDAE,
which took 0.567 seconds, RS-stacking, which utilized 0.890
seconds, and NWEC, which consumed 0.477 seconds. This
superiority is attributed to our algorithm’s ability to capture
and leverage the nuanced information present in the original
WiFi signal measures.

Furthermore, we compared our method with various WiFi
fingerprinting approaches, including RSS fingerprinting, RTT
fingerprinting, mixed RSS-RTT fingerprinting, and with WiFi
RTT trilateration. We observed that our proposed algorithm
outperformed all other traditional WiFi indoor positioning
models in all four complex indoor environments (refer to
Figure 8 (a), (b), (c), and (d)), achieving superior results with
positioning accuracies ranging between 0.75 m and 1.25 m in
the CDF curve for all four testbeds. Although our algorithm
slightly trailed RTT fingerprinting in the LOS lecture theatre
testbed, it showcased superior performance in the other two
testbeds (NLOS and mixed LOS-NLOS). Figure 8 demon-
strates the consistent accuracy of our proposed algorithm,
achieving an overall accuracy of up to 0.8 meters in 80% of
the instances.

Moreover, in the building floor testbed, we conducted eval-
uations employing grid sizes of 1.2 × 1.2 m2 and 1.8 × 1.8
m2. As shown in Figure 8 (d), while the use of a 1.2 × 1.2
m2 grid adversely affected the overall performance of the
proposed algorithm, adopting a 1.8 × 1.8 m2 grid achieved
accuracy levels comparable to those of the original grid size.
This is because when using a larger grid size, the fingerprints
among each reference point became even more distinguishing.
This demonstrates that the positioning error of our proposed
algorithm is more concentrated below 1 metre level and is
more robust in providing metre-level accuracy performance.

Finally, we observed that utilising statistical features for
selecting the best positioning model had a positive effect only
on RSS fingerprinting in the mixed LOS-NLOS office testbed.
Most of the time, the statistical features extracted were equal to
or even less than original preprocessed WiFi signal measures.
This occurred because when extracting statistical features, the
informative information hidden in separate WiFi samples was
eliminated to form general statistics.
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Fig. 7: Performance comparison with different popular WiFi
indoor positioning models using original features. RTT, RTT-
RSS and RSS indicate fingerprinting algorithms using corre-
sponding input features. Our proposed algorithm achieved an
accuracy of up to 0.8 m, 80% of the time.

VI. CONCLUSION

In this study, we introduced a novel algorithm that dy-
namically selects the most suitable positioning model for
each location. To evaluate our algorithm’s performance and
ensure its adaptability across diverse scenarios, we conducted
experiments in four real-world datasets representing complex
indoor environments: a long corridor, a lecture theatre, an
office room, and a whole building floor. These datasets cov-
ered various LOS/NLOS conditions. Across all 4 testbeds,
RTT fingerprinting consistently outperformed other models,
demonstrating superior accuracy in more than 36% of the
locations using the original RSS and RTT signal measures.
Surprisingly, RSS fingerprinting excelled in certain locations
in the mixed LOS-NLOS scenarios. Notably, RTT trilateration
failed to perform in many NLOS locations. These observations
demonstrate the need for dynamic model switching. Compared
to traditional WiFi fingerprinting methods and state-of-the-art
ensemble methods, our algorithm achieving up to 32% accu-
racy improvement over stacking algorithms and a 1.8-meter
RMSE reduction compared to standard RSS fingerprinting.
Our algorithm consistently delivered superior performance in
NLOS and mixed scenarios, achieving an overall 0.8-meters
accuracy in 80% of instances.

Future research could delve into integrating Machine Vision
and IMU-based positioning methods, extending the applicabil-
ity of the proposed dynamic model selection algorithm. Given
its flexibility regarding positioning models and input signal
features, the algorithm’s general concept could be extended
to incorporate alternative wireless signal measures like UWB,
BLE or WiFi CSI. Additionally, exploring more efficient
positioning models and advanced positioning model selection
classifiers is essential to enhancing prediction accuracy. This
opens avenues for broader applications and advancements in
wireless indoor positioning technologies.
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