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Abstract: The emerging WiFi Round Trip Time measured by the IEEE 802.11mc standard promised
sub-meter-level accuracy for WiFi-based indoor positioning systems, under the assumption of an
ideal line-of-sight path to the user. However, most workplaces with furniture and complex interiors
cause the wireless signals to reflect, attenuate, and diffract in different directions. Therefore, detecting
the non-line-of-sight condition of WiFi Access Points is crucial for enhancing the performance of
indoor positioning systems. To this end, we propose a novel feature selection algorithm for non-
line-of-sight identification of the WiFi Access Points. Using the WiFi Received Signal Strength and
Round Trip Time as inputs, our algorithm employs multi-scale selection and Machine Learning-based
weighting methods to choose the most optimal feature sets. We evaluate the algorithm on a complex
campus WiFi dataset to demonstrate a detection accuracy of 93% for all 13 Access Points using 34
out of 130 features and only 3 s of test samples at any given time. For individual Access Point
line-of-sight identification, our algorithm achieved an accuracy of up to 98%. Finally, we make the
dataset available publicly for further research.

Keywords: feature selection; WiFi Round Trip Time; non-line-of-sight; indoor positioning

1. Introduction

Although GPS has been indispensable for outdoor positioning, robust indoor position-
ing remains a research challenge. First, modern buildings with complex interiors make it
difficult for the weak GPS signals to penetrate. Second, the 5-10 m GPS accuracy cannot
provide the indoor users with the positioning accuracy they need for room-level tracking.
To address these challenges, several technologies were proposed in the literature and ap-
plied in the real world [1]. Due to the ubiquity of WiFi-enabled devices, WiFi-based indoor
positioning has drawn much attention. Indoor positioning systems using the WiFi Received
Signal Strength (RSS) were widely reported to achieve 2-3 m accuracy on average [2,3].
However, the challenges for WiFi RSS-based systems were signal instability and spatial
ambiguity caused by the multipath interference [4].

In recent years, the introduction of WiFi Round Trip Time (RTT) from the IEEE
802.11mc standard, which measures the travelling time of the signal between the transmit-
ter and receiver, has promised sub-meter positioning accuracy, under the assumption of a
clear line-of-sight (LOS) path. With RTT, positioning systems could trilaterate the user’s
location, assuming that the signal measure reflects the true distance. However, workplaces
with plenty of furniture often do not have a clear LOS path from the WiFi Access Points
to most locations, and hence, impact the wireless signal’s integrity. In such environments,
the WiFi RSS and RTT signals could be attenuated, reflected, blocked, or interfered, and re-
sulted in fluctuating and unpredictable measures [5]. Since the WiFi signal travels at the
speed of light, the fluctuating and reflecting nature of RTT propagation in complex indoor
spaces would result in large positioning errors with the trilateration technique. Moreover,
the instability of WiFi signal measures in non-line-of-sight (NLOS) scenarios would create
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highly similar values of WiFi measurements in two distinguishing locations several meters
away. Such similarity of signal measures would greatly decrease the accuracy of WiFi
fingerprinting in complex indoor environments. Therefore, detecting the LOS condition of
the WiFi Access Points is of great importance in enhancing the system performance.

To this end, we propose a framework for WiFi LOS detection by automatically se-
lecting the most informative feature set using Machine Learning and weighting methods.
For further optimization, we develop a novel multi-scale selection (MSS) method to vali-
date the importance of the features on multiple scales. The proposed framework used the
correlation between the input features and ground-truth labels to decide the importance of
each feature. To further investigate the informativity of the features, datasets of different
sampling sizes are used for feature validation.

In the preprocessing stage of the proposed framework, statistics of the input WiFi RSS
and RTT measurements were computed and fed into an importance filter. Several popular
feature selection models were used in the importance filter to decide their own feature
set based on different algorithms. Then, statistical features chosen by feature selection
models were assigned initial weights based on their macro F1 score and accuracy in LOS
identification. To validate the selected features from both macroscopical and microscopical
perspectives, multi-sampling datasets were introduced. Based on the performance of the
selected feature set, weights adjustment was leveraged to reselect the features recursively.
To evaluate the performance and transferability of the proposed algorithm, a large-scale
real-world campus building floor was used as the testbed. Each location in the dataset
was manually labeled and verified for ground truth. Since the framework only focuses on
reducing high-dimensional data based on the relevance between input signal measures
and the output, it could be applied to other signal measurements in indoor positioning.

The article’s contributions are summarized as follows:

*  Anovel feature selection framework was proposed to identify the LOS conditions of
WiFi APs with high accuracy even with few data samples, while using fewer Machine
Learning features than existing state-of-the-arts.

*  Alarge-scale real-world dataset for a campus floor was collected and made available
for further research. To the best of our knowledge, this was the first publicly avail-
able dataset that contains both WiFi RSS and RTT signal measures, as well as LOS
conditions of each AP for every location.

*  We analyzed our framework on such dataset to evaluate the efficiency and to provide
a baseline performance for further research.

The rest of the article is organized as follows: Section 2 introduces the related work
in WiFi LOS identification. Section 3 provides a detailed description of the framework
architecture, then the data preprocessing and the proposed feature selection method is
investigated in Section 4, the experimental setup and empirical performance are presented
and analyzed in Section 5. Finally, Section 7 concludes our work and outlines future work.

2. Related Work

The Non-Line-of-Sight (NLOS) scenario has always been a challenge for most posi-
tioning systems. For instance, although promising positioning accuracy is provided by
the Global Navigation Satellite System (GNSS) [6-10] in most outdoor spaces, GPS still
struggles where the signals are interfered by skyscrapers and poor weather conditions.
To address the problem, the system proposed by [11] leveraged the vector tracking loop
(VTL) to detect NLOS and perform corrections. Features such as noise bandwidth, time
delay of multi-correlator peaks, and code discriminator outputs were used as the input data.

Similarly, Massive Multiple-Input Multiple-Output (MIMO) systems also suffered
from the same NLOS challenge [12-16]. In [17], indoor MIMO channel measures were ana-
lyzed for kurtosis-based LOS detection. The importance of introducing kurtosis statistical
features was investigated based on channel impulse response (CIR). A stochastic model
was developed in [18] for outdoor LOS/NLOS scenarios. Multipath components (MPCs)
extracted from sub-array outputs were assessed and identified into spatial-stationary (SS)
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for modelling. To improve the vehicle MIMO localisation systems, Support Vector Machines
for LOS identification was proposed to process CIR information [19]. The role of small cells
was investigated in [20] for optimizing downlink heterogeneous cellular networks under
LOS and NLOS transmissions. Beside using a convolutional neural network (CNN) in a
3-D massive MIMO channel model, LOS detection [21,22] treated the problem as a binary
hypothesis test. Based on time-space-frequency channel correlation, the system in [22]
aimed to improve the new radio capacity and spectral efficiency of the 5G network.

For ultra-wideband systems (UWB), in ideal LOS conditions, the positioning accuracy
was widely reported to be at the centimeter level [23-27]. Researchers have also attempted
to address NLOS conditions for UWB indoor spaces. In [28], recursive decision tree
learning was used to exploit the UWB data for LOS detections. The CIR information
extracted from UWB signals was taken into consideration. Machine Learning methods
were leveraged to mitigate for the deviation of NLOS UWB measurements [29]. In [30],
multi-layer perceptron and CNN were used to make predictions. The 2D Time Difference of
Arrival (TDoA) framework based on deep Q-learning was proposed in [31] to make efficient
LOS node selection. The system in [32] introduced Morlet wave transform (MWT)to make
LOS detection based on time-domain characteristics. Table 1 compares the performance of
LOS identification in different systems.

Despite its high accuracy, the disadvantage of UWB positioning systems is that they
use proprietary beacons. On the contrary, WiFi-based indoor positioning systems leverage
existing WiFi APs. To achieve high LOS identification, Channel State Information (CSI)
was used [2,33-37]. A detailed description of the channel properties could be extracted
from CSI to identify the propagation situation of the WiFi signal [38]. Phase information,
amplitude information, Time-of-flight (ToF), and Angle-of-arrival (AoA) [39] extracted
from CSI were commonly used as inputs to identify LOS conditions. Similar to MIMO and
UWB systems, CIR converted by Inverse Fast Fourier Transform (IFFT) also helped improve
the identification accuracy [40-42]. In [40], the system achieved 90.5% LOS identification
accuracy when using Rician-K and skewness derived from CSI. The root mean square
delay spread, Skewness, Kurtosis of CSI were used in [43] in making LOS detection with
an accuracy of 95%. Systems proposed in [44,45] investigated the potential of power-delay
profile and power-angle spectrum, respectively. Other than exploiting phase information
of each sub-carrier [41], statistics of CIR were also studied for their performance in making
LOS classifications [46-51]. The system proposed by [47] achieved detection of LOS AP
with an accuracy of up to 94%. The standard deviation, kurtosis and skewness of CIR were
used in [46] and delivered an accuracy of 95% in detecting LOS situation. Furthermore,
CSI could also be leveraged to detect human activities. The system proposed in [52] used
existing WiFi equipments for location-oriented activity identification at home based on
CSI signal measurement. In [53], CSI was used to detect the human respiration based on
the Fresnel model. Although CSI provides detailed channel information of the WiFi signal
measures and is more informative and efficient in indoor positioning, it is hard to access.
CSI information could only be acquired on a PC with a modified WiFi driver such as the
Intel 5300 NIC. These limitations make it challenging to use in mobile devices such as
smartphones and tablets. As this article focuses on the wider implementation of WiFi-based
indoor positioning on heterogeneous devices, CSI was not considered to be one of the input
signal measurements in our empirical experiments, although our proposed framework
could also be applied for CSI measures.

In addition to CSI, WiFi Received Signal Strength (RSS) and Round Trip Time (RTT)
were often employed, due to their accessible nature in all WiFi-enabled devices. In addition,
the ESP32 system also supports WiFi RSS and RTT signal measurements. ESP32 is a low-cost
and low-power-consumption device integrated with a series of chips to support Wi-Fi and
Bluetooth. For WiFi RTT measurement testing and collection on ESP32, a utility software
called Chronos was created, as introduced in [54]. One of the most famous WiFi-based
positioning techniques for WiFi RSS is fingerprinting. The more complicated the interior
along the WiFi propagation path, the more unique the WiFi RSS measurements. Thus,
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in a real-world indoor space, each location will have its special WiFi RSS pattern. Such
distinguishing WiFi RSS patterns could be leveraged by indoor positioning systems to
make precise positioning estimations. As shown in Figure 1, fingerprinting consists of two
phases: an offline phase and an online phase. In the offline phase, a dataset is built in the
targeted testbed. WiFi measurements are recorded at each reference point and preprocessed
before being stored in the dataset. Each data sample is carefully labeled with ground-truth
coordinates of the reference point where the WiFi signal measures are collected. In the
online phase, when the user reports a real-time WiFi RSS measurement from an unknown
location, the system will match the measurement with those in the dataset and make a
positioning estimation based on their relevance. Fingerprinting could also be used in WiFi
RTT-based indoor positioning systems.
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Figure 1. The basic architecture of a classic WiFi indoor fingerprinting system. This system has two
phases: the offline phase and the online phase. In the offline phase, the WiFi signal measurements are
collected, preprocessed, labeled and stored in the dataset. In the online phase, the WiFi measurements
received by the user from an unknown location are compared with the measurements in the database
by the positioning algorithm to obtain the final location estimation.

The most common WiFi LOS identification method in the literature was based on the
statistical features of the signal measures. Several works employed the Round Trip Time
(RTT) [55-60], Received Signal Strength (RSS) [61-64]. The researchers in [65] used RSS in
identifying LOS conditions. A Gaussian model was leveraged to make detections based
on RSS signal measures in the system proposed by [66]. RTT measurements along with
pedestrian dead reckoning were used in LOS identification systems in [67]. To make use of
the statistics from WiFi signal measure, the standard deviations of both RSS and RTT were
used in [68] for NLOS error detections. Statistical features of kurtosis and the mean value
of both RSS and RTT measures were included in [69] identification system. Furthermore,
a wider range of statistics was covered in the LOS and NLOS channel detection system
in [70]. In addition to kurtosis and mean, skewness, hyper-skewness, and peak probability
extracted from RSS measures were investigated [70]. As concluded in [71], the statistical
features of RTT are more indicative to improving LOS identification than those of RSS. It
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was widely reported that the positioning and LOS identification accuracy of WiFi RSS-
based or RTT-based systems are not as high as that of CSI-based ones. However, the ease of
accessibility of RSS and RTT signal measures make them more appealing for WiFi-based
indoor positioning systems. In addition, to benefit the huge WiFi RSS and RTT existing
work, we focus this article on such measures to improve their performance.

Most importantly, the above previous approaches rely on the manual selection of
the features. They enumerated different combinations of features extracted from all WiFi
APs. However, since not all APs are informative, redundant information could impact the

performance accuracy. This is where our proposed framework comes into place.

Table 1. Comparison of the performance of notable work in LOS identification.

Authors Sensor Identification Test Bed Accuracy Notes
Technique

Huangetal. [19] MIMO SVM Public roads 96% The authors focused on identifying LOS con-
ditions in vehicle to vehicle localization sys-
tem and tested the system in large-scale out-
door space.

Zeng et al. [21] MIMO CNN Unspecified 97% By constructing the coordinated tap energy
matrix, the system achieved better results
than previous models.

Lietal. [22] MIMO  Binary Simulation 97% By leveraging time-space-frequency chan-

hypothesis test nel correlation, the authors improved 5G
New Radio (NR) capacity and spectral effi-
ciency.

Musa et al. [28] UWB Recursive Small apartment 90% The proposed method was tested in seven

decision tree common indoor environments and per-
formed best in small apartment.

Park et al. [30] UWB MLP and CNN Campus rooms 98% The proposed scheme in unmeasured envi-
ronment improved the accuracy by 10%.

Cui et al. [32] UWB MWT-CNN Office scenario 100% The Morlet wave transform (MWT) was
leveraged to time-frequency domain charac-
teristics for identification.

Li et al. [47] WiFi SVM Real-world build- 94% The authors investigated the LOS factor of

ing CSI in time-domain CIR samples and se-
lected the features manually.

Choi et al. [65] WiFi RNN 45 x 35 m?2 93% The system based on CSI and RSS signal
measures was test in the testbed with 5 APs
evenly placed.

Dong et al. [69] WiFi DNN, RF, SVM 11 x 12 m? 96% The statistical features of WiFi signals were
manually selected by the system.

Han et al. [71] WiFi SVM 5 x 15 m? 92% Only 1 out of 4 APs was placed under
NLOS conditions.

Xiao et al. [72] WiFi Least Square SVM 55 x 40 m? 95% The identification algorithm was tested in

a 3 AP test bed with multiple NLOS and
LOS scenarios.
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3. System Architecture and Problem Formulation

This section introduces the architecture of our proposed framework in detail, and for-
mulates the problem to be investigated.

3.1. System Architecture
The architecture of the proposed framework is shown in Figure 2:
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Figure 2. The architecture of our proposed framework. As illustrated in the bar plot, our proposed
framework greatly reduced the number of features while keeping the most informative ones.

e  Step 1: A feature preprocessing method is proposed to extract the statistical features
from raw WiFi training data. The mean, median, standard deviation, Kurtosis, and
Skewness are calculated. Then, several Machine Learning feature selection models are
used to analyze the importance of each feature and generate different sets of features.
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*  Step 2: Each feature set will be assigned an initial weight based on its macro F1 score
and accuracy. These weights will be fed into the Feature Selector in the next step,
and used for generating an initial set of features.

e  Step 3: A multi-scale selection (MSS) method is used to reduce the weights of the
uninformative features. The MSS method uses several scales of the datasets to select
the features from different perspectives. In doing so, features that are important in
both long-term time and short-term periods would be selected. The process is repeated
until an optimal set of features is decided.

e Step 4: Using the selected set of features from the previous step, a LOS identifier (e.g.,
Random Forest Classifier) is employed to make LOS detections for the WiFi APs.

3.2. Problem Formulation

Without loss of generality, the test bed is evenly divided into grids where each cell
represents a reference point. Please note that there is no overlapping reference point in
training and testing data. A total of ] grids is used as training reference point R;(j =
1,2,...,]). K consecutive scans of raw WiFi RSS and RTT signal measures from T number

- . 1 2 T
of WiFi APs are collected at every point R;: Xgssj = {xl(zs)s]‘k' xl(zs?Sjk' .. "xl(QS)Sjk}le and

RN C) () (T) K
XRr1j = {XRrTiKe XRTTjR 7 XRTTjR k=1

The LOS condition of each AP at the reference point R; is defined as Y; = [y](; ), yj(lf ), ceey

y](kT )] K, as follows:

M

() _ J 0 if there is no direct LOS path between R; and AP ¢
Uik = 1 if there is direct LOS path between R; and AP ¢

wheret =1,2,...,T.
The raw training data are defined as D = {X, )}, where Y = {Y]}]]:1 and X =

{XrrT)/s XRSSj}]]‘:y
When the raw testing WiFi signal measures X'r,5; at Ry are collected by the user,

it will be preprocessed so only the features selected by the Feature Selector will remain.

Then RFC identifies the LOS conditions y%)st of the t" AP. Finally, the LOS detection result
— D 2 (T) 14

Vrest = [Yuer YTosts - - -+ Ypsp) 1S generated.

4. Feature Preprocessing and Feature Selection Algorithms

This section provides detailed descriptions of our proposed framework, including the
feature preprocessing, initial weights assignment, feature selector and data validation.

4.1. Feature Preprocessing

As shown in Algorithm 1, during the Feature Preprocessing step, the statistics of the
WiFi RSS and RTT are computed and filtered based on their importance and correlation to
the LOS ground truth. Several traditional feature selection models are employed to analyze
the importance of the features.
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Algorithm 1 Feature preprocessing and initial weights assignment

Require: A’: input data, ): label, RFC: Random Forest Classifier, F1: macro F1 score calculation,
Acc: accuracy calculation, Njyjt,;: number of features expected
Ensure: X: statistical features, X: selected features, W: initial weights

1: Models < {all included feature selection models}
2: M < |Models|

3: for Xin X do > X includes both Xzt and Xggs
4: u <Mean(X)

5: Med <Median(X)

6: o <Standard Deviation(X)

7: S «Skewness(X)

8: I +Kurtosis(X)

9: end for

10: X < {y, Med, o, K, S}

11: form=1,2,..., M do

12:  model + m™" model in Models

13: Xy < TopNipisia (model, X, Y)

14:  Predict < RFC(X,,, )

15: E; < {F1(Predict, )), Acc(Predict, ))}

16: end for

17: form=1,2,..., M do

18: Wy < En / YM  Ew

> n: the n'! feature x,, in X
19: if x, € X, then

20: Wym — 0
21: end if
22: end for

23 W (T wmbnl, X
24: X « InitiateFeatureSet({X,, }M_ |, W)
25: return X, X, W

4.1.1. Statistical Feature Extraction

Using the raw WiFi training data, the preprocessing step leverages a feature extraction
method to generate the statistical features. Mean (i), median (Med), standard deviation (¢),
Skewness (S) and Kurtosis (), which were reported to be the most informative features for
LOS identification [2], are computed from the WiFi RSS and RTT input data. For statistics
calculation, the mean and central moment are defined as follows:

K
"= L}l s @
_ lele(xk - 3
Un = K ( )

where x; indicates the RTT or RSS data collected at a specific reference point, K is the total
number of data samples for statistics calculation, y;, is the nth central moment. Based on
the mean(y) and nth central momenty,,, standard deviation (), Skewness (S) and Kurtosis
(K) are computed as follows:

o= 4)

s=15 ©)
k=5 (6)

The raw training data X’ will be replaced by a new statistical feature vector X = {prrr,
prss, Medrrr, Medrss, OrTT, OrsS, SRTT, SrSs, KrrT, KRSs}-
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4.1.2. Importance Filter

In this step, an importance filter is employed to remove the less important features
from the previous feature preprocessing step. Several feature selection models are leveraged
to analyze the importance and correlations of the features in X to the ground truth label
Y. Each model selects the top Nj,;;is features based on their evaluation for the next step.
The statistical features are ranked by their importance so that the least important features
and those with the weakest correlation to the ground truth are removed.

We use the most popular feature selection models, namely Permutation Importance
(PI), Hierarchical Clustering (HC), Fisher’s Score (Fisher), Recursive Feature Elimination
(RFE), Least Absolute Shrinkage and Selection Operator (Lasso), Mean Decrease in Impurity
(MDY), Pearson Correlation (Pearson) and Chi-squared (Chi). A short description of the
models is as follows:

Permutation Importance (PI) The Permutation Importance model uses the mean
decrease in accuracy of a chosen classifier as the evaluation metric to calculate the feature’s
importance. To investigate the importance of each feature x, from the original feature set,
PI randomly shuffles every feature during the iteration r (r = 1,2,...,R). The shuffled
feature set is then fed into the classifier for identification. The impact of the shuffled feature
is illustrated by mean accuracy decrease MAD. Thus, the correlation between the feature
and the ground truth label could be evaluated which is also suitable for non-linear feature
selection purposes [73]. The mean decrease accuracy importance MAD of x;, is calculated
using both the average accuracy of shuffled data and the accuracy performance Acc of the
original feature set, as follows:

MAD = Acc — MeanAcc 7

1 R
MeanAcc = R r:Zl Accry (8)

As shown in Figure 3, the importance of each feature in the proposed dataset is listed
in their original order from left to right. Please note that features with negative MAD values
are of the least importance for LOS detection.

We chose this model, as it was the underlying model to achieve more than 90%
accuracy in breast cancer margins identification [74], and high accuracy in short-term
electricity load forecasting [75].

Hierarchical Clustering (HC) Although the above permutation importance model
already investigates the correlation between each feature and the output, some features
may have similar importance when they are closely relevant. Therefore, redundant features
still remain in the feature set after the selection by the PI model. To avoid the impact of
duplicated information, Hierarchical Clustering (HC) is introduced.

To identify closely related features, HC groups all the features in separate clusters so
that each cluster is clearly distinguishing from the rest. First, HC assigns every feature to
a unique cluster. By leveraging Ward'’s linkage function distance matrix converted from
Spearman correlation matrix, HC investigates the similarity among the clusters. Then,
the two most similar clusters are merged. By recursively repeating this process, the final
set of feature clusters are decided where each cluster only contains features that are most
similar to each other.

An example of the final clusters generated by HC is shown in Figure 4. Figure 5
demonstrates the correlations between every two features x, (Vx, € X).
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Figure 3. A snapshot of some most important statistical features selected by the Permutation Impor-
tance (PI) model. The X-axis indicates different statistical features from the dataset. Negative mean
accuracy values indicate that the corresponding features have the least correlation to the ground
truth labels. We observe that AP #6 located in the middle of the testbed is the most informative AP

for LOS identification.

Figure 4. The result from Hierarchical Clustering (HC). From the top node to the bottom, features are
divided by their correlations to the others. Further separated features are less similar to each other.
Please note that the order of the features listed is based on the result of HC.
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Figure 5. The correlation between features from Hierarchical Clustering (HC). The X and Y axis
represent the same set of features listed in the same order. Please note that this order is based on the
result of HC. Lighter color indicates stronger correlation.

We employ this model, as it was reported to achieve high classification accuracy for
daily electricity usage prediction with 97% less computational cost [76], and reached 99%
accuracy of classification on non-iid (not independent and identically distributed) data [77].

Fisher’s Score Fisher’s score is one of the most popular filter methods among feature
selection models. It evaluates the importance of the feature by computing the score between
each feature and all the classes in the ground truth label. Then, the features are ranked to
filter out the least important ones. The intuition of Fisher’s score is that the most informative
features of a class should be more concentrated within the class while being further away
from other classes. Fisher’s score is defined as:

_ Ynumy (i — i)’

Fisher, = )

2
Y numjvars,

where 1 represents the 1" feature, I indicates the I!" class in the label, num; is the number
of data samples in the I*” class, j,,; and var,; are the mean and variance of the n'" feature in
class I, py, is the mean of the nt" feature in all classes.

We employ the Fisher’s score, as it was the underlying feature selection method in
other application domains with reported high accuracy (e.g., intrusion detection systems
with 99% success rate [78], speech emotion recognition with 85% accuracy [79]).

Recursive Feature Elimination (RFE) The Recursive Feature Elimination model ana-
lyzes the importance of the feature by evaluating the change in the cost function. The intu-
ition of RFE is such that removing an informative feature has a considerable impact on the
cost function. Therefore, the larger and more rapid changes it causes to the cost function,
the more important a feature is to the LOS identification. After removing a feature from the
original set, the RFE model would calculate the changes to the cost function | immediately.
Using Support Vector Machine (SVM) to assign the weights, RFE eliminates the features
with the least importance iteratively. The changes in the cost function AJ(n) are defined
as [80]: )

AJ(n) = 3 5ok (A0h) (10)

where Aw? indicates the change in the weight of x;,.

The importance of a feature is evaluated based on A (). The whole process is repeated
until a feature set of the expected size is decided. For non-linear feature selection, the
Gaussian kernel was proven to provide better results [81].

We employ RFE, as it was reported to achieve high accuracy with other application
domains (e.g., fault diagnosis detection with an F1-measure of up to 0.95 [81]).
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Least Absolute Shrinkage and Selection Operator (Lasso) Least Absolute Shrinkage
and Selection Operator is an embedded feature selection model that gives a weight of 0
to the least important features. By leveraging L1 regularization (i.e., introducing L1-norm
to the cost function), Lasso is able to select the best features in high-dimension datasets.
The cost function in Lasso in defined as:

1
]Lasso =5 ——X ||y_X9||%+A||9||1 (11)

2 samples

where 754 pjes is the number of data samples, ) is the label of the input data, X is the
feature set, 0 is the slope term corresponding to each feature and A is the penalty term
indicating how severe the regularization is. In a set of closely correlated features, Lasso
only selects one of them rather than adopting the whole combination.

We employ Lasso, as it was reported to achieve high accuracy with other application
domains (e.g., crime prediction [82], tumor classification) with more than 81% accuracy [83].

Mean Decrease in Impurity (MDI) In contrast to the Permutation Importance, Mean
Decrease in Impurity measures the feature importance by calculating the average decrease
in Gini impurity [84]. In each node of a decision tree, every informative feature would help
to reduce the Gini impurity. For a randomly selected variable, the Gini impurity indicates
the probability of misidentification in this node, as follows:

L
G(t) =1~ lZ(pz)z (12)

=1
AG(t) = G(t) — G(t)chitdren (13)
G(t) chitdren = %G(fl) - %G(fzz) (14)

where L is the number of classes to be identified in the ground truth label, p; is the
probability of the data to be identified as class | € ), t is a specific node in Random Forest,
t; and tg are the child nodes of t, &} is the input to the t, X} and X}g are data divided into
t; and tg, respectively.

Therefore, the weighted average decrease in the impurityAG(t) of each related node
t would represent the importance of the corresponding feature [85]. The performance of
MDI was investigated in [86]. It was observed that by leveraging features selected by MDI,
an error rate as low as 4% was achieved.

Pearson correlation coefficient The Pearson correlation coefficient measures the linear
correlation between each feature and the ground truth label to select the most important
features. The covariance of the label ) and the feature set X is leveraged by the Pearson
correlation coefficient. The positive value of the covariance indicates a positive correlation
between the feature and the ground-truth LOS conditions. Pearson correlation coefficient is
defined as follows:

E[(xn — pix,) (Y — 1)) (15)

p - an Uy

where E is the mathematical expectation, x, and ) are the input feature and the label, i,
and py are the mean values of x, and Y, and 0y, and oy are the standard deviation of x;
and ).

We employ the Pearson correlation coefficient, as it was reported to achieve high
accuracy with other application domains (e.g., daily activity recognition [87] with more
than 86% accuracy).

Chi-squared The Chi-squared model evaluates the importance of the features by
calculating their correlations to the ground-truth labels ). The Chi-squared score X2
of each feature x,, (n = 1,2,..., N) is calculated where N is the total number of statistical
features in X as:

2y (0-¢€)
Xscore = Z T (16)
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where O in our case is the observation results in LOS identification based on ground-
truth label ) and WiFi signal features in X, and £ represents the expected output of the
identifications where X and )’ has no correlation at all. Since the Chi-squared score X2,
has an approximate Chi-squared (x?) distribution in large-scale data, the higher the x2.,,.,
the more important and relevant the feature is to the identification result.

We employ the Chi-squared model, as it was reported to achieve high accuracy with
other application domains (e.g., Arabic text recognition [88] with 90.50% accuracy).

4.2. Initial Weights Assignment

With the above importance filter, the feature sets Xon (where m indicates different
selection models) were chosen by the feature selection models. However, the generated
feature sets are not guaranteed with high identification accuracy and therefore, are not
equally informative to the result. Thus, in this step, the selected statistical features X,
are evaluated and assigned with initial weights. The LOS identification performance of
all feature sets are investigated by leveraging Random Forest Classifier (RFC) and cross-
validation. The macro F1 score (the average F1 score of all classes) and the accuracy are
used as the evaluation metrics, as follows:

Zlel Flscore,

Macro F1 score = T (17)
Precision x Recall
F1 =2 1
score % Precision + Recall (18)
S TP
Precision = TP+ EP (19)
TP
Recall = ———— 2
T TPIEN 20)

where L represents the total classes in the ground-truth label, TP is the number of the
true positive predicts, FP is the number of the false positive, and FN is the number of the
false negative.

After obtaining the LOS identification performance evaluation, an evaluation vector is
generated for each feature set based on the Macro F1 score and accuracy. Next, different ini-
tial weights w,,;, are generated by the Initial Weights Generator based on all the evaluation
vectors E,, of the feature set X,,,. All selected features %, in the generated feature set X, is
assigned with the same weight wy,. If a feature is filtered out by the feature selection model,
it is given the weight 0. The general weight of a statistical feature is defined as follows:

W= {W,}, (21)
W, = i Wy (22)
m=1

5
Wnm = Em/ Z Ewn (23)
m=1
Ey = {Fly, Accn } (24)

where w,,, is assigned with the weight of 0 when the corresponding x;; is not selected
by Xy.
4.3. Feature Selector and Testing Data Validation

In this step, we propose the feature selector to validate the statistical features from the
previous step.

4.3.1. Multi-Scale Selection (MSS)

To analyze the selected features in both long-time and short-time periods, a novel
multi-scale selection method is proposed (see Figure 2). By using datasets of different
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sampling scales, MSS removes the features with the weakest correlation and decides on an
optimal feature set with the minimum size N,,;, as shown in the Algorithm 2. This step
consists of four separate processes, namely multi-scale sampling, performance evaluation,
importance censoring and result voting. A comprehensive description of these processes is
given below.

Algorithm 2 Feature selector with multi-scale selection.

Require: X (s); input data of s sample size, Y (5): label of s sample size, X, X, W: outputs from
Algorithm 1, RFC:Random Forest Classifier, F1: macro F1 score calculation, Acc: accuracy
calculation, N,,;,,: minimum number of features, SampleSizes: a set of different sample sizes

Ensure: X*: final set of selected features

1: Models < {included feature selection models}

2: M + |Models|

3 Xpew — X

4: Woew +— W

5: while X,,¢ 75 Xo1q o1 |Xn€u}‘ < N,in do

6: Xowd  Xpew

7: Woid — Whew

8: form=1,2,...,Mdo

9: model +— m™ model in Models

10: for s in SampleSizes do

11: ijzl <+ GenerateFeature(X®),X,;,)
12: Predict +~ RFC(X5), ¥(®),)

13: ol + (F1,Acc(Predict, Y(©)), model (X5), ¥(<)))
14: > the output of model is the feature importances
15: end for

16: end for

17: V < ResultVoting(}. Ufﬁ))

18: Wiew < Weights Adjust(V, W ,4)

19: Xiew GenemteFeatureSet(X, Woew)
20: end while
21: X* — Xyew
22: return X*

Multi-Scale sampling First, to investigate the feature performance on datasets, multi-
scale sampling is adopted to generate datasets with different sampling sizes. For our
dataset, a maximum of 120 scans of WiFi measures were recorded in each reference point.
Thus, we evaluate different sampling sizes from five scans (i.e., short-term sudden change)
to 120 scans (i.e., long-term measure). As illustrated in Section 5.4, adopting different
sampling sizes has a clear impact on LOS identification.

Performance evaluation Next, the same evaluation methods in Section 4.2 are em-
ployed to analyze the feature performance on multi-scale datasets. The evaluation vectors
of the feature set on different datasets indicate the importance of each feature for LOS
detection. After a new feature set is generated based on the updated weights, RFC is used
to perform LOS identification.

Importance censoring Since the features are re-sampled according to different sam-
pling sizes, the hidden patterns that indicate the LOS condition change accordingly. Thus,
we use the feature selection models from the above importance filter to evaluate the rele-
vance of the features from different perspectives.

Result voting After obtaining the RFC performance and importances generated by the
above selection models, the features with the strongest correlations to multi-scale LOS iden-
tification are selected. Result voting is leveraged to rank the statistical features. With both
empirical performance and theoretical evaluations, the most informative and relevant
statistical features to LOS detections in the current set are decided. Features with higher
voting scores on multi-scale datasets receive increments in their corresponding weights.



Remote Sens. 2022, 14, 6052

15 of 30

el I

4.3.2. Final Feature Set and Testing Data Validation

After the weights update in the previous step, the features with lower weights (those
with uninformative information for LOS identification) are rejected, the weights generator
and feature set generator select a new feature set based on these updated weights W.
The new feature set will be fed into MSS for further iterations. When the final set of features
X* remains unchanged, this set will be used for data validation.

In the testing phase, the WiFi signal measures X', collected from the new reference
points are preprocessed. Statistics of WiFi RSS and RTT measurements are extracted to
form a statistical testing dataset Xr,5. By only keeping the features selected by the final
feature set X* from MSS, a new dataset containing only the most informative features X?gst
is generated.

5. Experimental Setup and Empirical Results

In this section, a comprehensive description of the proposed dataset is introduced.
Then, we evaluate the proposed framework on this dataset.

5.1. Test Bed and the Proposed Dataset

Although identifying LOS conditions of APs is of significant value for WiFi indoor
positioning systems, to the best of our knowledge, there is no publicly available dataset
that contains both the WiFi RTT, RSS signal measures and the LOS condition of the
reference points. Furthermore, there is no public WiFi positioning dataset that contains
multiple samples of both RTT and RSS per reference points, that are needed for statistical
analysis of the signal measures. Therefore, it is necessary to have a public dataset that
fulfills the above criteria for further WiFi indoor positioning research. This motivates
us to collect and publish our own large-scale real-world WiFi RSS and RTT datasets for
the community.

We chose the entire fifth floor of a campus building as the testbed (see Figure 6).
The space was filled with furniture and a noisy background with plenty of electromagnetic
signal transmitters. The indoor interior includes long narrow corridors, big meeting rooms,
small office rooms, and large open space. The variety of LOS and NLOS scenarios in this
testbed makes it suitable for testing our proposed LOS identification algorithms.

saJjPW ST

ey T

T S B T3 LI H,,,,,w | .Hﬁ nnnnnn

92 metres

Figure 6. The layout of the building floor. The icons show the locations of the WiFi APs. Measure-
ments were taken in the shaded area. The numbers next to the icons indicate the IDs of the Access
points.

For WiFi signal measurements, an LG G8X ThinQ smartphone and 13 RTT-enabled
Google APs were used. The APs were placed in the exact same locations as the university’s
regular APs. Using measuring tapes and ground markers, the ground-truth coordinates of
each reference point were carefully recorded and validated by human testers. In addition,
the LOS conditions of all APs from each reference point were manually collected and
verified. The detailed information of the proposed dataset is listed in Table 2. The dataset
is made public at https:/ /github.com /Fx386483710/WiFi-RTT-RSS-dataset (accessed on 10
April 2020).
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Table 2. Summary of our dataset.

Data Features Details
Testbed 92 x 15 m?
Grid size 0.6 x 0.6 m?
Total reference points 642
Data samples per reference point 120
Total data samples 77,040
Training samples 57,960
Testing samples 19,080
Signal measure WiFi RSS, WiFi RTT

Ground-truth labels LOS conditions, X and Y co-ordinate

A snapshot of the WiFi RSS and RTT measurements of our dataset is shown in Table 3.
The values in columns X" and ‘Y’ are the ground-truth coordinates of the reference point.
Columns ‘AP1’ to “AP13’ show the WiFi RSS and RTT from all APs at such reference point.
The value of —200 dBm indicates that the corresponding AP is not visible from the current
position. Similarly, the value of 100,000 mm demonstrates that no WiFi RTT signal is
received from the corresponding AP. Column ‘LOS APs” shows which APs the reference
point has a direct LOS path to. In our dataset, 120 scans (i.e., approximately 40 s) of data
samples are recorded at each reference point, which provides sufficient information for
further research. Please note that the reference points in the training and testing dataset do
not overlap. A desktop PC equipped with an Intel i9-12900k @ 4.90 GHz CPU and 32 GB
DDR4 4000 MHz memory was used to analyze the results.

Table 3. A Snapshot of the proposed WiFi dataset.

(a) WiFi RSS data samples

X Y AP1RSS (dBm) AP2RSS (dBm) AP13 RSS (dBm) LOS APs
34 12 —200 —200 —200 8

34 13 —200 —200 —-92 None
35 12 —200 —200 —93 8

35 13 —200 —200 —-91 None
125 15 —74 —47 —200 23

(b) WiFi RTT data samples

X Y APIRTT (mm) AP2RTT (mm) AP13 RTT (mm) LOS APs
34 12 100,000 100,000 5958 8

34 13 100,000 100,000 22,734 None
35 12 100,000 100,000 24,237 8

35 13 100,000 100,000 24,907 None
125 15 10,585 598 100,000 23

5.2. The Impact of NLOS Scenarios in Indoor Positioning

In NLOS scenarios, the WiFi signals are interfered, causing a negative impact on the
signal measurements. In the indoor environments, the signals are easily attenuated by
thick concrete walls, humans and furniture, making it challenging for indoor positioning.
As illustrated in Figure 7, the WiFi RSS measurements were not stable over time. Most
importantly, we observed that even though strong signal measures of —60 dBm were
received, the same NLOS WiFi AP could not be reached at some point.
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Figure 7. A histogram of the WiFi RSS signal measurement from the dataset proposed in
Section 5.1. We observed that the RSS measures were unstable and easily attenuated during long
observation period.

To have a deeper understanding of the real-world impact of NLOS conditions, we
recorded the WiFi RSS and RTT signal measurements under two scenarios: LOS where there
was a clear path between the AP and the smartphone, and NLOS where there was a human
body in-between. The smartphone was placed 3 m away from the AP. We observed in
Figures 8-10 that under the NLOS scenario, both signal measures were unstable. For WiFi
RSS, the recorded measurement values decreased drastically from —54 dBm to —80 dBm.
Additionally, the distribution of the WiFi RSS became wider. However, we observed that
although the RTT measures became larger, its distribution was less affected than RSS under
the NLOS scenario. There were occasional outliers of up to 4 m (from the ground-truth of
3 m). Under LOS conditions, both WiFi RSS and RTT signals were stable and exhibited a
small distribution. Therefore, with correct calibration, the RTT measures could locate the
user with good accuracy by trilateration. It was also observed in the CDF curve that the
variance of the LOS RTT measures stayed within 0.5 m while NLOS had a variance of up
to 3.5 m. Therefore, successfully identifying the LOS conditions of each AP would help
improving the indoor positioning accuracy.
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Figure 8. The WiFi RSS signal measure under different scenarios. A smartphone was placed 3 m away
from the access point. We observed that in NLOS experiment where the signal was blocked by human
body, the RSS measurement became unstable and reduced drastically due to the NLOS condition.
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Figure 9. The WiFi RTT signal measure under different scenarios. A smartphone was placed 3 m
away from the access point. We observed that in human NLOS experiment where the signal was
blocked by human body, the RTT measurement became larger, more unreliable and further away
from the ground truth distance measure.
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Figure 10. The CDF curves of WiFi RTT signal measure under different scenarios. A smartphone was
placed 3 m away from the access point. We observed that in human NLOS experiment where the
signal was blocked by human body, the minimum error of the RTT measurement increased and the
maximum error grew larger as well. WiFi RTT became more unreliable under NLOS scenarios.

To investigate the impact of a dynamic indoor environment on the signal measures, we
collected both WiFi RSS and RTT measures under three scenarios: LOS, NLOS and corridor
LOS. The smartphone was moving away from the AP while recording WiFi data. To create
a common NLOS condition, the AP was placed on the other side of a thick concrete wall.
In the corridor experiment, although the AP had a clear LOS path to the smartphone in
a narrow long corridor, the WiFi signals struggled under the heavy reflections created by
the walls. To analyze the correlation between the WiFi signals measurements and the true
distance, the RSS and RTT values were normalized. As shown in Figures 11-13, in an
ideal LOS experiment, the RSS measures (in green color) had much smaller variance under
LOS conditions. However, the RTT measure (in orange color) showed its robustness in
the NLOS scenario by producing a similar level of variance as the RSS measures. In the
corridor experiment, it was observed that the RSS measures were greatly attenuated by the
interior, where locations up to 9 m away from the AP had similar RSS. On the contrary,
the RTT measure showed clear correlations to the true distance with some minor offsets.
We concluded that the RTT measures were more robust and reliable in more complex
environments and the RSS measures were more sensitive to the interior changes.
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Figure 11. The comparison of the WiFi RSS and RTT measurements as a function of the true distance
in LOS scenario. The RSS (as shown in green color) and RTT (as shown in orange color) values were
normalized. We observed that under LOS conditions, RSS measures were more resilient.
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Figure 12. The comparison of the WiFi RSS and RTT measurements as a function of the true distance
in a NLOS scenario. The WiFi signal was blocked by a thick wall. The RSS (as shown in green color)
and RTT (as shown in orange color) values were scaled between 0 and 1. We observed that under

NLOS conditions, RSS and RTT measures had similar variance.
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Figure 13. The comparison of WiFi RSS and RTT measurements as a function of the true distance in a
long narrow corridor. The WiFi signal suffered from severe reflections and attenuations. The RSS (as
shown in green color) and RTT (as shown in orange color) values were normalized. We observed
that in complex indoor spaces, the RSS produced large variance even with clear LOS path to the AP.
The RSS measurements were unpredictable with similar values up to 9 m away. In contrast, the RTT
measures were more stable and had a clear positive correlation to the true distance.

As shown in Figures 14 and 15, when using only raw statistical features from all LOS
APs, the positioning error was 1.18 m. However, after introducing NLOS APs, the error
increased to 1.41 m. When only NLOS signals are included, the positioning error went
up to 1.65 m. In addition, the largest RMSE produced by NLOS features was up to
7 m. We observed that using LOS WiFi signals could greatly improve the positioning
accuracy by up to 29%. Please note that the results were based on raw statistical features.
The above empirical results indicate that identifying the LOS conditions of the APs is of
great importance.
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Figure 14. The CDF result of WiFi fingerprinting using the signal measures from only LOS APs,
NLOS APs, and all the APs. Please note that all statistical features from the corresponding APs were
leveraged. Introducing NLOS signal measures greatly reduced the performance accuracy. The largest

positioning error was up to 7 m.
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Figure 15. The RMSE result of indoor positioning WiFi signal measures from only LOS APs, NLOS
APs, and all the APs. Please note that all statistical features from the corresponding APs were
leveraged. Using only raw statistical features from LOS APs improved the positioning accuracy by
up to 29 % compared to only using NLOS signals.

5.3. The Importance of Feature Selection

In LOS identification, higher accuracy is not guaranteed with more data. The WiFi
signals are unstable and may introduce more errors into the positioning result. To assess the
impact of introducing raw WiFi statistical features, we used the random forest classifier to
perform LOS detection. WiFi AP6, AP8 and AP12 were chosen as examples for individual
LOS detection because they had the most LOS paths to the RPs. The positions of the three
APs are as shown in Figure 6. The performance of using unmodified statistical features
is illustrated in Figure 16 and Table 4. We observed that using all the raw features from
the corresponding AP does not guarantee better accuracy. The WiFi signals from AP12
contained more noisy information for the classifier. On the contrary, using features from
all APs failed in LOS detection of AP6. We observed that to achieve robust LOS detection
results, selecting the most meaningful features is of great importance.
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Figure 16. The performance of all APs and individual AP LOS identification using different sets of
features. Please note that features included are all statistical features introduced in Section 4.1.1.
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Table 4. The Macro F1 score performance of all APs and individual AP LOS identification using
different sets of features.

Features of This AP All Features Features by MSS
AP6 0.845 0.609 0.897
AP8 0.89 0.933 0.933
AP12 0.609 0.851 0.865
All APs N/A 0.689 0.780

5.4. Sampling Size

The novel idea of developing the multi-scale selection method is to analyze the impor-
tance of the statistical features from both macroscopical and microscopical perspectives.
The signal patterns indicating the LOS condition of each AP were investigated in both long-
term and short-term time periods. Therefore, stable measurements and sudden changes
were included in identifying LOS conditions. As demonstrated in Figure 17, statistical
features from datasets of different sampling sizes provide distinguishing information.
For features from 120 to scan data, only the mean value of all RTT measurements was kept.
The outliers and fluctuating measurements were removed during the feature extraction
phase. In contrast, the 5-scan dataset still recorded the abnormal RTT measures at the
reference point which implied a higher possibility of the NLOS condition of the AP.

100 T\
|
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ﬂﬂ\ |

85 L\-
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80 10scans
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75 30scans

70
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Time

\
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Mean of AP1 RTT (metres)

—— 120scans

Figure 17. The mean value of AP1’s RTT measures with different sampling sizes at a RP. The value of
100 indicates that there is no WiFi signal at this RP. Datasets of different sample sizes contain signal
patterns of different time period.

To illustrate the significance of the MSS method, LOS identification performance
was evaluated on multi-scale datasets. Datasets of different sampling sizes (i.e., 5, 10,
15, 30, 60, 120) were generated by MSS. For the dataset with a minimum of five scans,
every 1.5 s WiFi signal measures were used to form the statistical features. AP6, AP8, and
AP12 were chosen for individual AP LOS detection because they had the most LOS paths
to the RPs. The positions of the three APs are as shown in Figure 6. The performance
results of LOS identifications using multi-scale datasets are shown in Figure 18 and Table 5.
In the proposed framework, we focus on the LOS conditions of both individual AP and
all APs at the same time. As illustrated in the results, using smaller sampling sizes had
an improvement in identifying the LOS of certain APs. However, such influence became
negative when predicting the conditions of all APs at the same time. We observed that the
features selected by the proposed MSS method had a great improvement in the performance
of both individual and all-AP LOS predictions.
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Figure 18. The performance of all APs and individual AP LOS identification using datasets of
different sampling sizes, compared to MSS. Statistical features of all APs were used except for MSS
where only selected features were used. Features selected by MSS are more informative than features
from single sample size dataset.

Table 5. The Macro F1 score performance of all APs and individual AP LOS identification using
datasets of different sampling sizes, compared to MSS.

120-scans 60-scans 30-scans 15-scans 10-scans 5-scans MSS

AP6 0.82 0.67 0.87 0.61 0.53 057  0.92
AP8 0.93 0.98 0.95 0.93 0.94 0.93 0.98
AP12 0.82 0.88 0.85 0.85 0.85 092  0.87
All APs 0.62 0.60 0.64 0.69 0.70 0.72 0.78

5.5. The Performance of the Proposed Framework

Since using all statistical features had a poor performance in LOS detections, feature
selection algorithms were introduced to address the problem. By leveraging feature se-
lection models, features with redundant information were removed, while noisy features
were marked for further improvement.

For performance evaluation of the proposed framework, WiFi RSS and RTT datasets
containing the ground-truth coordinates and LOS conditions are needed. However, cur-
rently, there is no publicly available dataset that meets this requirement. Therefore, to vali-
date the LOS identification accuracy and assess the transferability and generalization of
our proposed framework, a large-scale real-world dataset was proposed as introduced in
Section 5.1. By evaluating the performance on both individual AP and all APs LOS identifi-
cation, we illustrate the transferability and generalization of the proposed framework.

Several state-of-the-art feature selection algorithms were used for comparison. In
addition to popular feature selection models (i.e., PI, HC, Fisher, RFE, Lasso, MDI, Pearson,
and Chi) as introduced in Section 4.1.2, algorithms proposed by previous works were
included. The C°EF model proposed by [69] used the mean RSS measurement and other
statistical features (e.g., mean, quantile deviation, number of outliers) extracted from RTT
measures. In the paper by Dong et al. [69], different manually selected combinations of
the features were tested. S-F [71] leveraged the mean, standard deviation, Skewness, and
Kurtosis of both WiFi RTT and RSS measures. The features set (represented as Sun) selected
by [68] contained standard deviations of both RTT and RSS. Consisting only of raw RSS and
RTT measures, the Choi set [89] identified APs sending both large RTT measures and low
RSS measures as NLOS. In the Si feature set chosen by [66], mean and variance of the RSS
were leveraged. The system proposed [70] used standard deviation, skewness, kurtosis,
hyper-skewness, and peak probability as the neural network input for WiFi channel LOS
identifications, represented by Carpi. The 10-scans dataset was used because it was the
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most indicative based on the above empirical results. Macro F1 score and weighted F1
score were used as evaluation metrics. Macro F1 score focused on valuing all APs equally
while the weighted F1 score balanced the disparity among the classes.

The identification of LOS conditions of all APs was performed based on different
feature selection models. The performance of each algorithm is illustrated in Figure 19 and
Table 6. We observed that the feature set selected by the proposed framework improved
the LOS identification results greatly. In macro F1 score, the proposed framework achieved
up to 126% improvement compared to previous work and up to 29% compared to popular
feature selection models. For weighted macro F1 score, the proposed framework achieved
up to 81% improvement compared to previous work and up to 16% compared to popular
feature selection models. Our proposed framework also used fewer features, with only 34
out of 130 features. The number of features used by Pearson and Fisher models was more
than 110 and 90, respectively. The result demonstrated that further analysis of the feature
importance in the multi-scale datasets provided higher accuracy. As shown in Figure 20,
the misclassifications happened mostly in reference points that were located in cornered
areas. We observed from Figure 20 that stable and strong WiFi connections would provide
more reliable LOS identification.
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Figure 19. The performance of different sets of features in all APs LOS identification. Our proposed
MSS is up to 28.8% better than popular feature selection models and up to 14.5% better than state-of-
the-art WiFi LOS identification algorithms.

Table 6. Comparison of the LOS identification performance of previous state-of-the-art.

PI HC Fisher RFE Lasso MDI Pearson Chi Carpi CSEL §i S-F  Choi Sun Proposed

Weighted F1
Macro F1

090 088 091 072 089 088 091 088 041 089 057 088 089 0.68 0.93

068 0.71

070 068 067 068 0.71 070 0.67 0.69 067 068 068 043 0.78
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Figure 20. The RPs where the system makes misidentification. The orange dots indicate the RPs of
testing data while the red indicate the misidentifications. Most misidentifications took place in areas
surrounded by complicated interior changes.

Furthermore, the proposed framework was evaluated on its individual AP LOS de-
tection. As shown in Figure 21, APs that had LOS path to any RPs were included in the
evaluation. AP6, AP8 and AP12 had LOS paths to the most RPs while AP7 and AP10
only had LOS paths to 8 RPs and 4 RPs, respectively. It was observed that the proposed
framework provided promising performance in LOS identifications for individual APs
even with a LOS path to a few RPs.
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Figure 21. The performance of the individual AP identification. APs which do not have LOS path
to any RP are not included. Please note that only 8 and 4 RPs have LOS path to AP7 and AP10,
respectively. MSS selected features achieve more than 0.5 F1 score performance even in APs with
insufficient data.

6. Discussion

We compared our proposed framework with several feature selection models and LOS
identification algorithms from previous works, in empirical settings. We observed that our
framework increased the macro F1 score and weighed F1 score by up to 15.3% and 28.8%,
respectively. Most importantly, our framework used fewer features compared to existing
state-of-the-art models.

The major improvement in our feature selection progress is that instead of enumerating
different combinations of features manually (as adopted by previous works), the proposed
framework automatically selects the best set of features. The final selection is only based on
the input features and ground-truth label which guarantees the framework’s transferability
to high-dimensional data of other signal measurements. For instance, WiFi RTT measure-
ments collected from ESP32 system using Chronos software [54] can be used directly as
the input to the proposed framework with no restrictions. The framework would only
investigate the correlations between the input features and the ground-truth label and select
the best set of features accordingly. The proposed MSS method investigates the feature
importance in multiple sampling scales so that the final set of features is informative from
both macroscopical and microscopical perspectives.
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To validate the generalization of the framework, a novel dataset was collected. To the
best of our knowledge, there is no existing WiFi dataset that contains detailed WiFi RSS, RTT
signal measurements, ground-truth coordinates of the reference points, and LOS conditions
of all APs to each reference point. The contributions of the dataset to the research field are
as follows:

e The dataset was collected in a campus floor. Each AP was surrounded by complex
interiors and in different LOS/NLOS conditions.

e The testbed of 92 x 15 m? was evenly divided into 0.6 x 0.6 m? grids which served as
reference points. Each grid was carefully labeled with ground-truth coordinates by
two human surveyors. Reference points for training and testing are not overlapping.

¢ At each reference point, more than 120 scans of both WiFi RTT and RSS signal mea-
surements were collected. During collection, the influence of the human body was
taken into consideration.

¢  Each data sample was meticulously labeled with LOS conditions of all the APs in
the testbed.

*  With more than 77,000 samples, the dataset provides good coverage for the evaluation
of any WiFi RSS-based, RTT-based or hybrid indoor positioning systems. The real-
world indoor environment guarantees the generalization of the proposed framework.

7. Conclusions and Future Work

In this article, a novel feature selection framework for LOS identification of WiFi
APs was introduced. Our proposed framework efficiently selects the most optimal set of
informative features for identifying WiFi LOS scenarios. Different from previous state-of-
the-art techniques where features were selected manually, our framework automatically
investigates the importance of each feature on multi-scale datasets.

In the preprocessing stage, statistics of the input WiFi measurements were computed
and fed into the importance filter. Several popular feature selection models were used in
the importance filter to decide their own feature set based on different algorithms. Then,
in the initial weight assignment step, the statistical features chosen by feature selection
models were assigned with initial weights based on their macro F1 score and accuracy in
LOS identification. Based on the empirical experience, RFC was used as the LOS identifier
in our framework. Next, to validate the selected features from both macroscopical and
microscopical perspectives, multi-sampling datasets are introduced in the feature selector.
Based on the performance of the selected feature set, importance censoring and result
voting were leveraged to adjust the weights of the features recursively. In the testing stage,
the proposed framework extracts the same features from the testing data selected by the
feature selector.

For evaluation of the framework, a dataset was collected in a large-scale real-world
indoor environment. More than 120 scans of data samples were recorded and carefully
labeled by two human surveyors. Since each AP was surrounded by complex interi-
ors, the generalization of the proposed LOS identification algorithm could be validated.
To investigate the improvement brought by feature selection, we compare the proposed
framework with raw statistical features on individual AP and all APs identification. It was
observed that using selected features by the proposed work improved the macro F1 score
by up to 50%. We observed that using only 3 s data, the proposed framework provided
promising LOS detection accuracy which is up to 93% for all APs at the same time and 98%
for individual AP.

For future work, we may improve the combinations and selections of different feature
selection models used in the importance filter (see Section 4.1.2) which may reduce the time
cost and enhance the efficiency of the proposed framework. Furthermore, sliding windows
in different sampling scales may be considered for implementation in multi-scale selection
as introduced in Section 4.3.1. The sampling method leveraged in the proposed framework
was not sensitive to different segmentations of a long consecutive data record. Using
sliding window may help the framework to select better features for LOS identification.
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The proposed framework focuses on investigating the importance of the feature to the
ground truth label. It takes the features for classification or regression systems as the input,
and outputs a selection of the most informative features. Therefore, it is not restricted to
WiFi RSS and RTT signal measurements. Due to the great transferability of the proposed
framework, it could be implemented to reduce high-dimensional data collected from other
signal measurements, such as CSI, CIR, and UWB.

Author Contributions: Conceptualization, X.F.,, K.A.N. and Z.L.; methodology, X.F,; software, X.F.
and K.A.N.; validation, X.F,, K.A.N. and Z.L.; formal analysis, X.F.,, K.A.N. and Z.L.; investigation,
X.F. and K.A.N.; resources, X.F., K.A.N. and Z.L.; data curation, X.F. and K.A.N.; writing—original
draft preparation, X.F,; writing—review and editing, K.A.N. and Z.L; visualization, X.E; supervision,
K.AN. and Z.L.; project administration, K.A.N. and Z.L.; funding acquisition, K.A.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Brighton.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com /Fx386483710/WiFi-RTT-RSS-dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, K.A,; Luo, Z.; Li, G.; Watkins, C. A review of smartphones-based indoor positioning: Challenges and applications. IET
Cyber-Syst. Robot. 2021, 3, 1-30.

2. Huang, C.; He, R.; Ai, B.; Molisch, A.F; Lau, BK,; Haneda, K; Liu, B.; Wang, C.X,; Yang, M.; Oestges, C.; et al. Artificial
intelligence enabled radio propagation for communications—Part II: Scenario identification and channel modeling. IEEE Trans.
Antennas Propag. 2022, 70, 3955-3969.

3. Liu, F; Liu, J.; Yin, Y.; Wang, W.; Hu, D.; Chen, P,; Niu, Q. Survey on WiFi-based indoor positioning techniques. IET Commun.
2020, 14, 1372-1383.

4. Nguyen, K.A ; Luo, Z. On assessing the positioning accuracy of Google Tango in challenging indoor environments. In Proceedings
of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18-21 September 2021;
IEEE: Piscataway, NJ, USA, 2017; pp. 1-8.

5. Feng, X.; Nguyen, K.A; Luo, Z. An analysis of the properties and the performance of WiFi RTT for indoor positioning in
non-line-of-sight environments. In Proceedings of the 17th International Conference on Location Based Services, Munich,
Germany, 12-14 September 2022.

6. Nie, Z,; Liu, F; Gao, Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device. Gps Solut. 2020, 24, 1-11.

7. Marra, A.D.; Becker, H.; Axhausen, K.W.; Corman, F. Developing a passive GPS tracking system to study long-term travel
behavior. Transp. Res. Part C Emerg. Technol. 2019, 104, 348-368.

8.  Zein, Y.; Darwiche, M.; Mokhiamar, O. GPS tracking system for autonomous vehicles. Alex. Eng. J. 2018, 57, 3127-3137.

9.  Zhang, E.; Masoud, N. Increasing GPS localization accuracy with reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2020,
22,2615-2626.

10. Gondelach, D.J.; Linares, R. Real-time thermospheric density estimation via radar and GPS tracking data assimilation. Space
Weather 2021, 19, €2020SW002620.

11.  Xu, B, Jia, Q.; Hsu, L.T. Vector tracking loop-based GNSS NLOS detection and correction: Algorithm design and performance
analysis. IEEE Trans. Instrum. Meas. 2019, 69, 4604—4619.

12. Wen, E; Wymeersch, H.; Peng, B.; Tay, W.P; So, H.C.; Yang, D. A survey on 5G massive MIMO localization. Digit. Signal Process.
2019, 94, 21-28.

13. He, J.; Wymeersch, H.; Kong, L.; Silvén, O.; Juntti, M. Large intelligent surface for positioning in millimeter wave MIMO systems.
In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Virtual Event, 25-28 May 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1-5.

14. De Bast, S.; Guevara, A.P,; Pollin, S. CSI-based positioning in massive MIMO systems using convolutional neural networks. In
Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Virtual Event, 25-28 May 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1-5.

15. Lin, Y, Jin, S.; Matthaiou, M.; You, X. Channel estimation and user localization for IRS-assisted MIMO-OFDM systems. IEEE
Trans. Wirel. Commun. 2021, 21, 2320-2335.

16. Ma,].; Zhang, S.; Li, H.; Gao, E; Jin, S. Sparse Bayesian learning for the time-varying massive MIMO channels: Acquisition and
tracking. IEEE Trans. Commun. 2018, 67, 1925-1938.

17.  Zhang, J.; Salmi, J.; Lohan, E.S. Analysis of kurtosis-based LOS/NLOS identification using indoor MIMO channel measurement.

IEEE Trans. Veh. Technol. 2013, 62, 2871-2874.


https://github.com/Fx386483710/WiFi-RTT-RSS-dataset

Remote Sens. 2022, 14, 6052 28 of 30

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

Chen, J.; Yin, X,; Cai, X.; Wang, S. Measurement-based massive MIMO channel modeling for outdoor LoS and NLoS environments.
IEEE Access 2017, 5, 2126-2140.

Huang, C.; Molisch, A.F; Wang, R.; Tang, P; He, R.; Zhong, Z. Angular information-based NLOS/LOS identification for vehicle
to vehicle MIMO system. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC
Workshops), Shanghai, China, 22-24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1-6.

Zhang, Q.; Yang, H.H.; Quek, T.Q.; Lee, ]. Heterogeneous cellular networks with LoS and NLoS transmissions—The role of
massive MIMO and small cells. IEEE Trans. Wirel. Commun. 2017, 16, 7996-8010.

Zeng, T.; Chang, Y.; Zhang, Q.; Hu, M.; Li, ]. CNN-based LOS/NLOS identification in 3-D massive MIMO systems. IEEE Commun.
Lett. 2018, 22, 2491-2494.

Li, J.; Chang, Y.; Zeng, T.; Xiong, Y. Channel correlation based identification of LOS and NLOS in 3D massive MIMO systems. In
Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15-18 April
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1-6.

Ridolfi, M.; Kaya, A.; Berkvens, R.; Weyn, M.; Joseph, W.; Poorter, E.D. Self-calibration and collaborative localization for uwb
positioning systems: A survey and future research directions. ACM Comput. Surv. (CSUR) 2021, 54, 1-27.

Poulose, A.; Han, D.S. UWB indoor localization using deep learning LSTM networks. Appl. Sci. 2020, 10, 6290.

Yu, K.;; Wen, K; Li, Y.; Zhang, S.; Zhang, K. A novel NLOS mitigation algorithm for UWB localization in harsh indoor
environments. IEEE Trans. Veh. Technol. 2018, 68, 686—699.

Macoir, N.; Bauwents, J.; Jooris, B.; Van Herbruggen, B.; Rossey, J.; Hoebeke, J.; De Poorter, E. Uwb localization with battery-
powered wireless backbone for drone-based inventory management. Sensors 2019, 19, 467.

Poulose, A.; Emersi¢, Z.; Eyobu, O.S.; Han, D.S. An accurate indoor user position estimator for multiple anchor uwb localization.
In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea, 21-23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 478-482.

Musa, A.; Nugraha, G.D.; Han, H.; Choi, D.; Seo, S.; Kim, J. A decision tree-based NLOS detection method for the UWB indoor
location tracking accuracy improvement. Int. J. Commun. Syst. 2019, 32, €3997.

Barral, V.; Escudero, C.J.; Garcfa-Naya, J.A.; Maneiro-Catoira, R. NLOS identification and mitigation using low-cost UWB devices.
Sensors 2019, 19, 3464.

Park, J.; Nam, S.; Choi, H.; Ko, Y.; Ko, Y.B. Improving deep learning-based UWB LOS/NLOS identification with transfer learning:
An empirical approach. Electronics 2020, 9, 1714.

Hajiakhondi-Meybodi, Z.; Mohammadi, A.; Hou, M.; Plataniotis, K.N. DQLEL: Deep Q-Learning for Energy-Optimized
LoS/NLoS UWB Node Selection. IEEE Trans. Signal Process. 2022, 70, 2532-2547.

Cui, Z.; Gao, Y,; Hu, J.; Tian, S.; Cheng, ]. LOS/NLOS identification for indoor UWB positioning based on Morlet wavelet
transform and convolutional neural networks. IEEE Commun. Lett. 2020, 25, 879-882.

Li, H.; Zeng, X.; Li, Y.; Zhou, S.; Wang, ]. Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI
images. China Commun. 2019, 16, 250-260.

Dang, X.; Tang, X.; Hao, Z.; Ren, J. Discrete Hopfield neural network based indoor Wi-Fi localization using CSI. EURASIP ]. Wirel.
Commun. Netw. 2020, 2020, 1-16.

Wang, X.; Wang, X.; Mao, S. Deep convolutional neural networks for indoor localization with CSI images. IEEE Trans. Netw. Sci.
Eng. 2018, 7, 316-327.

Dang, X.; Tang, X.; Hao, Z.; Liu, Y. A device-free indoor localization method using CSI with Wi-Fi signals. Sensors 2019, 19, 3233.
Tong, X.; Wan, Y,; Li, Q.; Tian, X.; Wang, X. CSI fingerprinting localization with low human efforts. IEEE/ACM Trans. Netw. 2020,
29, 372-385.

Feng, X.; Nguyen, K.A.; Luo, Z. A survey of deep learning approaches for WiFi-based indoor positioning. J. Inf. Telecommun.
2022, 6, 163-216.

Li, Z; Tian, Z.; Zhou, M.; Zhang, Z.; Jin, Y. Awareness of line-of-sight propagation for indoor localization using Hopkins statistic.
IEEE Sen. |. 2018, 18, 3864-3874.

Zhou, Z.; Yang, Z.; Wu, C.; Sun, W,; Liu, Y. LiFi: Line-of-sight identification with WiFi. In Proceedings of the IEEE INFOCOM
2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April-2 May 2014; IEEE: Piscataway, NJ, USA,
2014; pp. 2688-2696.

Wu, C,; Yang, Z.; Zhou, Z.; Qian, K,; Liu, Y.; Liu, M. PhaseU: Real-time LOS identification with WiFi. In Proceedings of the 2015
IEEE Conference on Computer Communications INFOCOM), Hong Kong, China, 26 April-1 May 2015; IEEE: Piscataway, NJ,
USA, 2015; pp. 2038-2046.

Zhou, Z.; Yang, Z.; Wu, C.; Shangguan, L.; Cai, H.; Liu, Y.; Ni, L. M. WiFi-based indoor line-of-sight identification. IEEE Trans.
Wirel. Commun. 2015, 14, 6125-6136.

Chang, T,; Jiang, S.; Sun, Y,; Jia, A.; Wang, W. Multi-bandwidth NLOS Identification Based on Deep Learning Method. In
Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22-26 March
2021; IIEEE: Piscataway, NJ, USA, 2021; pp. 1-5.

Jiokeng, K.; Jakllari, G.; Tchana, A.; Beylot, A.L. When FTM discovered MUSIC: Accurate WiFi-based ranging in the presence of
multipath. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada,
69 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1857-1866.



Remote Sens. 2022, 14, 6052 29 of 30

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Zheng, Q.; He, R.; Ai, B,; Huang, C.; Chen, W.; Zhong, Z.; Zhang, H. Channel non-line-of-sight identification based on
convolutional neural networks. IEEE Wirel. Commun. Lett. 2020, 9, 1500-1504.

Ramadan, M.; Sark, V.; Gutierrez, J.; Grass, E. NLOS identification for indoor localization using random forest algorithm. In
Proceedings of the WSA 2018 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14-16 March 2018; VDE:
Berlin, Germany, 2018; pp. 1-5.

Li, X.; Cai, X.; Hei, Y,; Yuan, R. NLOS identification and mitigation based on channel state information for indoor WiFi localisation.
IET Commun. 2017, 11, 531-537.

Sharma, S.; Mohammadmoradi, H.; Heydariaan, M.; Gnawali, O. Device-free activity recognition using ultra-wideband radios.
In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI,
USA, 18-21 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1029-1033.

Bocus, M.; Piechocki, R.; Chetty, K. A Comparison of UWB CIR and WiFi CSI for Human Activity Recognition. In Proceedings of
the IEEE Radar Conference (RadarCon), Atlanta, GA, USA, 10-14 May 2021.

Han, S.; Li, Y.; Meng, W.; Li, C.; Liu, T.; Zhang, Y. Indoor localization with a single Wi-Fi access point based on OFDM-MIMO.
IEEE Syst. ]. 2018, 13, 964-972.

Chen, L.; Ahriz, I.; Le Ruyet, D.; Sun, H. Probabilistic indoor position determination via channel impulse response. In
Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Bologna, Italy, 9-12 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 829-834.

Wang, Y.; Liu, J.; Chen, Y.; Gruteser, M.; Yang, J.; Liu, H. E-eyes: Device-free location-oriented activity identification using
fine-grained wifi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking,
Maui, HI, USA, 7-11 September 2014; pp. 617-628.

Wang, H.; Zhang, D.; Ma, J.; Wang, Y.; Wang, Y.; Wu, D.; Gu, T.; Xie, B. Human respiration detection with commodity wifi devices:
Do user location and body orientation matter? In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Berlin/Heidelberg, Germany, 12-16 September 2016; pp. 25-36.

MENEZES, C. Wi-Fi FTM RTT Based Positioning System. 2021. Available online: https://contest.embarcados.com.br/wp-
content/uploads/2021/11/Wi-Fi-FTM-RTT-Based-Positioning-System-Chronos-3-2.pdf (accessed on 14 November 2022).

Yu, Y;; Chen, R.; Chen, L.; Guo, G,; Ye, F; Liu, Z. A robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors.
Remote Sens. 2019, 11, 504.

Yu, Y.; Chen, R.; Chen, L.; Xu, S.; Li, W.; Wu, Y.; Zhou, H. Precise 3-D indoor localization based on Wi-Fi FTM and built-in sensors.
IEEE Internet Things ]. 2020, 7, 11753-11765.

Schepers, D.; Singh, M.; Ranganathan, A. Here, there, and everywhere: Security analysis of wi-fi fine timing measurement. In
Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Virtual Conference, 28
June-2 July 2021; pp. 78-89.

Shao, W.; Luo, H.; Zhao, F; Tian, H.; Yan, S.; Crivello, A. Accurate indoor positioning using temporal-spatial constraints based
on Wi-Fi fine time measurements. IEEE Internet Things J. 2020, 7, 11006-11019.

Banin, L.; Bar-Shalom, O.; Dvorecki, N.; Amizur, Y. Scalable Wi-Fi client self-positioning using cooperative FTM-sensors. IEEE
Trans. Instrum. Meas. 2018, 68, 3686-3698.

Yu, Y.;; Chen, R;; Liu, Z.; Guo, G.; Ye, F; Chen, L. Wi-Fi fine time measurement: Data analysis and processing for indoor localisation.
J. Navig. 2020, 73, 1106-1128.

Pajovic, M.; Wang, P.; Koike-Akino, T.; Sun, H.; Orlik, P.V. Fingerprinting-based indoor localization with commercial mmWave
WiFi-part I: RSS and beam indices. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big
Island, HI, USA, 9-13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1-6.

Guo, X.; Elikplim, N.R.; Ansari, N.; Li, L.; Wang, L. Robust WiFi localization by fusing derivative fingerprints of RSS and multiple
classifiers. IEEE Trans. Ind. Inform. 2019, 16, 3177-3186.

Zhang, L.; Chen, Z.; Cui, W,; Li, B.; Chen, C.; Cao, Z.; Gao, K. Wifi-based indoor robot positioning using deep fuzzy forests. IEEE
Internet Things J. 2020, 7, 10773-10781.

Xue, J.; Liu, J.; Sheng, M.; Shi, Y.; Li, . A WiFi fingerprint based high-adaptability indoor localization via machine learning. China
Commun. 2020, 17, 247-259.

Choi, J.S.; Lee, WH.; Lee, ].H.; Lee, ].H.; Kim, S.C. Deep learning based NLOS identification with commodity WLAN devices.
IEEE Trans. Veh. Technol. 2017, 67, 3295-3303.

Si, M.; Wang, Y.; Xu, S.; Sun, M.; Cao, H. A Wi-Fi FTM-based indoor positioning method with LOS/NLOS identification. Appl.
Sci. 2020, 10, 956.

Xu, S.; Chen, R.; Yu, Y;; Guo, G.; Huang, L. Locating smartphones indoors using built-in sensors and Wi-Fi ranging with an
enhanced particle filter. IEEE Access 2019, 7, 95140-95153.

Sun, M.; Wang, Y.; Xu, S.; Qi, H.; Hu, X. Indoor positioning tightly coupled Wi-Fi FTM ranging and PDR based on the extended
Kalman filter for smartphones. IEEE Access 2020, 8, 49671-49684.

Dong, Y.; Arslan, T.; Yang, Y. Real-time NLOS/LOS Identification for Smartphone-based Indoor Positioning Systems using WiFi
RTT and RSS. IEEE Sens. J. 2021.


https://contest.embarcados.com.br/wp-content/uploads/2021/11/Wi-Fi-FTM-RTT-Based-Positioning-System-Chronos-3-2.pdf
https://contest.embarcados.com.br/wp-content/uploads/2021/11/Wi-Fi-FTM-RTT-Based-Positioning-System-Chronos-3-2.pdf

Remote Sens. 2022, 14, 6052 30 of 30

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Carpi, F; Davoli, L.; Martalo, M.; Cilfone, A.; Yu, Y.; Wang, Y.; Ferrari, G. RSSI-based methods for LOS/NLOS channel
identification in indoor scenarios. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems
(ISWCS), Oulu, Finland, 27-30 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 171-175.

Han, K.; Yu, S.M.; Kim, S.L. Smartphone-based indoor localization using Wi-Fi fine timing measurement. In Proceedings of the
2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September—3 October 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1-5.

Xiao, Z.; Wen, H.; Markham, A_; Trigoni, N.; Blunsom, P.; Frolik, J. Non-line-of-sight identification and mitigation using received
signal strength. IEEE Trans. Wirel. Commun. 2014, 14, 1689-1702.

Altmann, A.; Tolosi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics
2010, 26, 1340-1347.

Koya, S.K.; Brusatori, M.; Yurgelevic, S.; Huang, C.; Werner, C.W.; Kast, R.E.; Shanley, J.; Sherman, M.; Honn, K.V.; Maddipati,
K.R.; et al. Accurate identification of breast cancer margins in microenvironments of ex vivo basal and luminal breast cancer
tissues using Raman spectroscopy. Prostaglandins Other Lipid Mediat. 2020, 151, 106475.

Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting
using random forest. Energies 2016, 9, 767.

Li, K;; Ma, Z.; Robinson, D.; Ma, J. Identification of typical building daily electricity usage profiles using Gaussian mixture
model-based clustering and hierarchical clustering. Appl. Energy 2018, 231, 331-342.

Briggs, C.; Fan, Z.; Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-I1ID
data. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19-24 July 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 1-9.

Aksu, D.; Ustebay, S.; Aydin, M.A.; Atmaca, T. Intrusion detection with comparative analysis of supervised learning techniques
and fisher score feature selection algorithm. In Proceedings of the International Symposium on Computer and Information
Sciences, Kuala Lumpur, Malaysia, 13-14 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 141-149.

Sun, L.; Fu, S.; Wang, F. Decision tree SVM model with Fisher feature selection for speech emotion recognition. EURASIP |. Audio
Speech Music Process. 2019, 2019, 1-14.

Guyon, I.; Weston, ].; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.
2002, 46, 389-422.

Xue, Y,; Zhang, L.; Wang, B.; Zhang, Z.; Li, F. Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis.
Appl. Intell. 2018, 48, 3306-3331.

Nitta, G.R; Rao, B.Y.; Sravani, T.; Ramakrishiah, N.; Balaanand, M. LASSO-based feature selection and naive Bayes classifier for
crime prediction and its type. Serv. Oriented Comput. Appl. 2019, 13, 187-197.

Kang, C.; Huo, Y,; Xin, L.; Tian, B.; Yu, B. Feature selection and tumor classification for microarray data using relaxed Lasso and
generalized multi-class support vector machine. . Theor. Biol. 2019, 463, 77-91.

Leo, B. Manual On Setting Up, Using, Furthermore, Understanding Random Forests V3.1. Stat. Dep. Univ. Calif. Berkeley 2002,
1, 58.

Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural
Inf. Process. Syst. 2013, 26.

Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In
Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26-28 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 219-224.

Liu, Y;; Mu, Y,; Chen, K;; Li, Y.; Guo, J. Daily activity feature selection in smart homes based on pearson correlation coefficient.
Neural Process. Lett. 2020, 51, 1771-1787.

Bahassine, S.; Madani, A.; Al-Sarem, M.; Kissi, M. Feature selection using an improved Chi-square for Arabic text classification. J.
King Saud Univ.-Comput. Inf. Sci. 2020, 32, 225-231.

Choi, J.; Choi, Y.S.; Talwar, S. Unsupervised learning techniques for trilateration: From theory to android app implementation.
IEEE Access 2019, 7, 134525-134538.



	Introduction
	Related Work
	System Architecture and Problem Formulation
	System Architecture
	Problem Formulation

	Feature Preprocessing and Feature Selection Algorithms
	Feature Preprocessing
	Statistical Feature Extraction
	Importance Filter

	Initial Weights Assignment
	Feature Selector and Testing Data Validation
	Multi-Scale Selection (MSS)
	Final Feature Set and Testing Data Validation


	Experimental Setup and Empirical Results
	Test Bed and the Proposed Dataset
	The Impact of NLOS Scenarios in Indoor Positioning
	The Importance of Feature Selection
	Sampling Size
	The Performance of the Proposed Framework

	Discussion
	Conclusions and Future Work
	References

