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Abstract

Indoor localisation provides the positioning service to the indoor users, where the GPS
coverage is not available. Much research effort has been invested into ‘Location Finger-
printing’, which is considered one of the most effective indoor tracking methods to date.
Fingerprint-based approaches piggyback on top of the existing indoor communication lay-
ers such as the WiFi network to provide the location-based service. However, the challenges
of fingerprinting are the huge training database, the dynamic indoor environment, and the
WiFi fingerprints may struggle to provide fine-grained positioning accuracy at certain indoor
positions. This thesis addresses the mentioned problems using several machine learning al-
gorithms and additional information observed from the users and the indoor environment.

While the literatures considered fingerprinting as an un-supervised learning problem to
divide the training database into clusters based on the received signal strength only, this
thesis realises that fingerprinting is a supervised learning problem with the Cartesian label
attached to each signal reading. By exploiting this information, the thesis introduces a
two-level clustering process with mixture of Gaussians clustering to improve the database’s
inquiring speed and the prediction accuracy.

The WiFi signal strength is notoriously noisy. Therefore, the thesis examines the use of
the magnetic field strength in the form of a continuous sequence. This sequence represents a
walking trajectory, which will be demonstrated to be highly repeatable with time. The thesis
introduces a new training dataset called the routine database to facilitate the user’s walking
habits, in order to predict in advance the potential destination and the intended route, which
is a novel feature for fingerprinting.

Most existing fingerprint-based approaches imply a strong assumption that the estimated
user position is correct, to the best of their knowledge. However, there is no such guarantee,
given the noisiness nature of the training database. To address this challenge, the thesis
proposes a confidence measure to reflect the uncertainty of the positioning prediction.

Finally, the thesis presents a scheme to detect and estimate the signal strength of the
missing WiFi Access Points. This problem may happen at any time because the Access
Point is accidentally switched off, or because of the nature of the WiFi scanning process.
However, it is conveniently overlooked in most fingerprinting researches.

The proposed approaches in this thesis have been validated in the real offices with chal-
lenging indoor environments. One test bed has multiple buildings and floors, and has been
previously used in the EVAAL 2015 indoor positioning competition, which provides a rel-
ative baseline for the proposed techniques. In particular, the regression and classification
algorithms in this thesis were ranked second and third out of the 5 contestants, under the
same competition’s test domain. In addition, they performed up to 20% more accurate than
traditional Naive Bayes and W-KNN algorithms.
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Chapter 1
Introduction to indoor positioning

“Our success used to be determined by delivering the right message, to the right
audience, at the right time. Now we can do it in the right place.”
— Donald Dodge, The next big thing (2013).

This chapter presents the motivations of this thesis, the research objectives, the main contri-

butions and the structure of the thesis.



2 Introduction to indoor positioning

1.1 What is indoor positioning, and why is it useful?

Global Navigation Satellite Systems (GNSS) such as GPS have been successfully deployed
in the past two decades, and are indispensable for outdoor navigation. However, people
spend most of their times indoors, where limited or no GNSS service is available at all,
because the satellites’ signals are too weak to penetrate the building. In addition, GPS
cannot provide the indoor users with the positioning accuracy they need for room-level
tracking. The growing demand for an indoor navigation system from the industry (e.g.
the supermarkets and the hospitals) to provide the location-based services for their clients
has encouraged much interest in the indoor localisation research. Some noticeable events
include the founding of InLocation Alliance! in 2012 by 22 major mobile companies (e.g.
Samsung, Sony, Qualcomm) and Apple’s $20 million big-money acquisition of the start-
up WiFiSlam? in 2013. They all have one goal in mind: ‘To bring the location services

indoors!’

Furthermore, because the majority of the people’s activities happen indoors, the posi-
tioning systems have much more potential to provide personalised services tailored to the
user experience, rather than simply how to travel from one location to another, as normally
seen in outdoor GPS localisation. The customers do not only want to pinpoint the location
of a particular product, but also prefer to be notified of the latest in-store offers of other
relevant nearby products. The managers are not only interested in knowing what the cus-
tomers buy, but also want to find out how long they dwell on a particular shelf. All these
services may only become feasible if the user’s position is known. The applications of in-
door positioning can be classified into two general categories, which are ‘active tracking’
and ‘passive monitoring’. The active tracking system can be viewed as an on-demand ser-
vice that guides the user to the required destination when requested, which is equivalent to
the indoor version of Google Maps. The passive monitoring system, however, runs in the
background to continuously monitor the user’s positions, so that the system is aware of the
user’s whereabouts in real-time to re-act accordingly. Table 1.1 compares some specific ap-
plications of indoor positioning for the three popular areas of the society, that are healthcare
(e.g. hospitals), retailer (e.g. shopping malls) and industry (e.g. warehouses, museums).

The tracking devices can be the users’ mobile phone, or a tag attached to the push trolleys.

Thttp://inlocationalliance.org - last accessed in Sep/2016.
Zhttps://angel.co/wifislam - last accessed in Sep/2016.



1.1 What is indoor positioning, and why is it useful?

Table 1.1 The applications of indoor positioning.

Active tracking

Passive monitoring

Healthcare | For patients For patients
* Route-finding to the doctor’s room. | * Automatic checking-in/-out upon
arriving or leaving.
* Automatic wheel-chair navigation
to a destination.
For doctors For doctors
* Finding the equipment’s position. * Informed when the patient arrives.
* Quickly find the patient in an  24/7 monitoring of patients with
emergency. mental illness.
Retailer For customers For customers
* Product-finder to navigate to a » Showing the latest deals when
particular shelf. the items of interest are nearby.
* Buying assistant for personalised
shopping experience.
For managers For managers
* Identifying real-time staff location | * Creating geo-fences to automatically
(No need for public announcements). | send out e-coupons when the user is
near a particular shelf.
* Identifying congestions and footfall.
* Finding areas of high or low density
to improve store’s layout.
Industry For clients For clients

* Seat-finding in the theatre.
* Friend-finder app for the cinema.
* Luggage-tracking at the airport.

For administrators
* Item-finder to search for products
in the warehouse.

* Automatic computer guided tours
of museums.

For administrators

* Informed when a luxury item leaves
the secured area.

* Automatically adjusting conveyor
speed when transporting heavy items
in the warehouse.

* Automatic door opening/closing
when the staff are nearby.




4 Introduction to indoor positioning

1.2 Indoor positioning systems

The existing indoor positioning systems employ a variety of technologies to support the
process of estimating the user position (see Figure 1.1). Some of these technologies are
ubiquitous (e.g. WiFi, FM, inertial sensors on the smart phone), whereas the others are

manually deployed (e.g. Ultrasonic, infrared).

gystems

Radio signals based Magnetic Sound based Vision based
based
I[_ A —_

WiFi] [UWB] I[FM ][Cellular]I[UItrasonic Ambient|| LED
'Ltmgznge_l

Short range
L —

[ Indoor positioning ]

Inertia based

[Camera][InfraredlAcceIerometer][G\iroscope]

Fig. 1.1 The taxonomy of the indoor positioning systems.

Overall, based on how the systems interact with the indoor environment, they can be di-
vided into two broad categories, which are infrastructure-based systems and infrastructure-
free systems.

With the infrastructure-based approach, the system relies on a particular piece of hard-
ware that needs to be installed into the building. These hardware are often specifically
designed for indoor positioning, and are costly to install and to maintain. Some of the most
notable systems include the Active Bat which is still the industry benchmark to date [70, 88].
The system comprises of a network of ultrasonic beacons mounted at fixed known positions
on the ceiling to capture the pulses emitted at regular intervals from the tags (see Figure 1.2).
These tags are worn by the users, so that the beacons can measure the time-of-flight the pulse
taken to travel from the tag to the beacons. The system achieves up to 3 centimetre accuracy,
95% of the time. However, only 9 institutions in the world can afford it3. The most recent

technology in this category is the LED-based system which has been adopted by Philips

3In the UK, they are University of Cambridge, University of Kent, Imperial College London, Lancaster
University. From overseas, they are University of Twente (Netherlands), Xerox PARC, DEC research labora-
tories, Bellcore and MIT (all from the US).
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for the French supermarkets in 2015. For this system, normal light bulbs are replaced by
special LEDs which are designed to blink rapidly at imperceptible human-eyes level. The
smart phone’s front camera is used to capture and to decode these optical luminaries [49].
Overall, the infrastructure-based systems often provide excellent positioning accuracy, at
the expense of additional hardware, which is also challenging to set up without conflicting

with other existing infrastructure already operating in the building.

(a) Bat beacon. (b) Bat tag.

Fig. 1.2 The components of the Active Bat ultrasonic positioning system [88].

In contrast, the infrastructure-free systems are self-contained and require no additional
changes to the indoor environment. These systems piggyback on top of the structures that
already exist in the building (e.g. the WiFi network) to provide the positioning service. The
earliest and most basic form of this category was the proximity-based tracking system [11].
When a user is within the coverage distance of the wireless transmitter, his location is de-
termined as the known location of the transmitter itself. However, the positioning accuracy
was not great because the broadcasting range of the transmitter was often large. For the
past decade, the most discussed approach in this category is WiFi fingerprinting, which
generates a radio map of the building to serve as a training database. This data are later
used to estimate the position of the user in real-time [5, 81, 86, 89, 98]. The majority of
infrastructure-free systems employed ubiquitous devices such as the mobile phones to ob-
tain inputs from the environment. Others introduced their own sensors. However, it is worth
noting that they are mostly affordable. Due to the increasing popularity of the smart phones,
Pedestrian Dead-Reckoning (PDR) based systems have been the new trend in recent years.
These PDR systems use the inertial sensors (i.e. accelerometer, compass, gyroscope) in the
phone to provide relative positioning feedbacks [16, 61, 71, 87]. The challenges for these
systems are that the sensors in current smart phones are particularly noisy, because they are
included for basic app support, rather than for the robust positioning purpose. Overall, the
advantage of the infrastructure-free approach is the ease of deployment, at the expense of a

lower positioning accuracy than the infrastructure-based approach.
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Table 1.2 Summary and comparisons of the latest infrastructure-based systems.

Authors Citation | Sensors used | Accuracy | Summary of technology
Want etal dlrasonic puse taken 0 avel
(Active [88] Ultrasonic 0.03m p
from the user tag to the beacons
Bat) .
on the ceiling.
Modified LEDs blink rapidly at
different rates. These coded
Kuo et al. .
(Luxapose) [49] LED 0.07 m | optical pulses are captured by
p the phone camera to decode the
user location and orientation.
A stationary camera mounted on
Aitenbich- the wall measures the angle of
Infrared, . . .
ler et al. [1] Stereo-camera 0.16 m | arrival of the light rays emitted
(IRIS-LPS) from the infrared tags worn by
the users.
Microphone worn by the user
records the 40 kHz ultrasound
Hammer et Loudspeaker, constantly played by the
[31] i 0.25 m o
al. microphone loudspeakers at fixed positions.
The time-of-flight of these
audible signals is calculated.
Markham Magnf?to— Magnetlc ‘transmltters are s‘et up
et al [60] inductive 0.45 m | in the environment to provide
' transceivers low frequency magnetic field.
Campbel Ultra between the receivers sing
et al. (De- [12] wideband 0.6 m .. &
. minimum least squares
caWave) transceiver . .
trilateration.
Inertial foot sensor to detect
Bluetooth, step-length. Bluetooth beacons
Klipp et al. [47] Accelerome- 0.78 m p-iengin.
ter, Gyroscope are set up at the doors to correct
’ the drifting errors.
Low-power ZigBee sensors are
Fangetal. | [26] | ZigBee 1.5m | installedatfixed known
positions, whose signal are used
to infer the user’s position.
Ni et al. RFID readers attached on the
(LAND- [65] RFID 1.6 m wall constantly look for the
MARC) RFID tags worn by the users.
. . Measuring ground vibrations
Mirshekari Geophone, ]
etal. [12] Amplifier 8 m induced by the human footsteps

with geophone.
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Tables 1.2 and 1.3 overview the design, the positioning accuracy and the underlying
technologies of some notable infrastructure-based and infrastructure-free systems in the lit-
erature. Only the most prominent systems with the highest positioning accuracy for each
technology were selected to review. It is important to remind that the reported accuracy was
obtained by each author’s own testing environment. In general, sub-metre positioning accu-
racy can be expected for the infrastructure-based systems, whereas, 2 to 5 metre accuracy

was popular with the infrastructure-free ones.

Table 1.3 Summary and comparisons of the latest infrastructure-free systems.

Authors Citation | Sensors used | Accuracy | Summary of technology
PDR, WiFi fingerprinting,
geomagnetic fingerprinting and

ge;i(l({)}/}c)h [7] 3\21;? Phone, 1.5m map matching are fused
together using Particle Filter to
estimate the user position.
The light, sound, colour and
Azizyan et (4] Microphone, Am WiFi signal from the ambient
al. Camera, WiFi environment are recorded to

generate a fingerprint database.
GSM signals from nearby
cellular towers are captured to

Varshavsky

[84] GSM 4 m L
et al. general a fingerprinting
database.
The magnetic field strength in
Chung et [15] Magnetometer 47 m the bu11d1ng is captured by the
al. mobile phone to create a
fingerprinting dataset.
RSS from iBeacons are used to
Faragher et Bluetooth .
[28] 4 4.8 m construct a BLE fingerprinting
al. Low Energy
database.
Relative trajectories of the users
Zhang et al. are obtained via the inertial
(Navi- [99] Smart Glass 5.7m sensors of the glass. The glass’
Glass) camera provides visual sensing

to correct the drifting error.

RSS from commercial FM radio
Yoon et al. [97] FM receiver 6 m stations are used to construct a
FM fingerprinting database.

4This system may be classified as infrastructure-based. However, the authors argued that iBeacons are
becoming as ubiquitous as WiFi, and there is no need to deploy them manually in the building.
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1.3 Research questions

This thesis presents the use of several machine learning techniques and additional informa-

tion to address the challenges of WiFi1 fingerprinting, to be discussed in detail in the next

chapters. In doing so, it aims to answer the following research questions.

@)

(ii)

(iii)

How to address the volatility and the noisiness of the indoor environment?

Firstly, it is common to find several different indoor positions with a similar WiFi
signal observation, because of the signal multi-path issue. Chapter 3 addresses this
challenge by pre-processing the training database to divide the training examples into
different groups. Secondly, the real-time signal sample may not fully match the train-
ing example previously observed in the same position, because the environment has
slightly changed. Chapter 4 will introduce a novel parameter to reflect the uncertainty
of the positioning prediction. Lastly, the WiFi signals may also be distorted by other
environmental factors and the WiFi scanning process, which result in an incomplete
signal observation. Chapter 6 will rectify this issue by identifying and estimating the

missing signals.

Is the WiFi received signal strength alone sufficient to achieve fine-grained sub-

metre positioning accuracy for fingerprinting?

Most existing fingerprint-based systems rely totally on the WiFi signal. However,
trying to push the boundary of fingerprinting into sub-metre with only the WiFi signal
strength is challenging. To aid the WiFi readings, using other sources of wireless
information is a compelling option, yet, not all information are robust or ubiquitous
enough to maintain the infrastructure-free concept of fingerprinting. Chapter 5 will
present some extra information that can be easily found indoors and are specifically

tailored to the users.

Are the public outdoor WiFi Access Points suitable for outdoor mobile phone

co-localisation?

Fingerprinting is a well-known approach for indoor positioning. However, it is chal-
lenging to apply the technique for outdoor localisation, because the environment is
much bigger and more dynamic. Through-out a series of experiments with the outdoor
WiFi signals collected in several measurement campaigns in the real world, Chapter
7 assesses the feasibility to detect the outdoor co-localisation of the people, a sub-
category of outdoor localisation, using the mobile phones and the public WiFi Access

Points.
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1.4 Contributions to this field of research

Firstly, most authors working on fingerprinting have mainly been concerned with the use of
the WiFi signal strength only. Secondly, many fingerprint-based researches in the literature
either made no assumption about the quality of the positioning estimation, or firmly believed
that the prediction is the correct one. Thirdly, the positioning labels were mostly ignored
in clustering-based fingerprinting. Fourthly, most fingerprinting researchers overlooked the
missing WiFi APs problem during a real-time scan. Finally, fingerprinting has often been
limited to identify a single position of the user.

The work I present in this thesis consists of the use of additional information beside the
WiFi signals to support the positioning estimation. In particular, the thesis identifies the

following contributions.

(i) T'use the magnetic field to predict not just a single position, but also the whole walking

trajectory and the potential destination of the user in real-time.

(i1) I introduce a confidence measure to reflect the uncertainty of the positioning predic-

tions, and to deliver a prediction set.

(111) I propose a novel two-level soft clustering process that involves both the WiFi RSS
and the Cartesian label to reduce the searching time and tackle the signal borderline

challenge at the same time.

(iv) I address the missing APs problem in the real-time WiFi scan by proposing a scheme
to detect and estimate the value of the missing APs using only the WiFi RSS from the

previous position.

(v) 1 present the results of a series of experiments with the data collected through-out
several measurement campaigns in the real world to assess the feasibility of using the

public outdoor WiFi APs and the mobile phones to co-locate the people’s position.

1.5 Limitations of scope

This thesis focuses on evaluating the research questions posed above to address the chal-
lenges circling around the application of fingerprinting in real-world environments. How-
ever, it is not the intention of this thesis to provide an in-depth discussion of every aspect of

fingerprinting. In particular, the following limitations apply.
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@)

(ii)

(111)

@iv)

v)

(vi)

The privacy of the users’ position is important for any tracking system. However, the
thesis does not discuss such feature. No data encryption is performed at any time on

the mobile client or the fingerprinting server.

The thesis is concerned with the problem of tracking people. It does not consider
object tracking, although the algorithms described in Chapter 4 can be applied to track
the position of any object with an equipped WiFi-enabled device. Other algorithms
presented in Chapters 5, 6 and 7 make use of specific knowledge such as the user’s

routine, and therefore, are unsuitable for tracking arbitrary objects.

The WiFi signal strength is used as the main measurement in this thesis, due to its
ubiquity, and the ease of measuring. Other wireless signals (e.g. FM, Cellular, Blue-
tooth) may also be used. Most algorithms presented in this thesis may be applied to

those signals, although the thesis does not experiment all of them in detail.

The positioning result is provided in the form of the numeric Cartesian co-ordinate in
this thesis, which is understood by the system to evaluate the algorithms’ performance.
To present this result to the normal users, the system needs to translate the co-ordinate
into geo-coded information (e.g. ‘The user is currently in Room 121, and is near the
front door’). This process requires an extra layer running on top of the positioning

system, which is beyond the scope of this thesis.

The algorithms in this thesis were designed with 2-dimensional positioning data in
mind, although they may also be applicable for 3-dimensional data. The terrains are

assumed to be flat. The escalator, stair case and other non-flat surfaces were not tested.

Although all the proposed ideas in each chapter contribute towards a fingerprint-based
indoor positioning system, it is worth noting that the thesis does not aim to deliver
a complete product that is suitable to sell immediately to the public. There are still
many challenges for fingerprinting in particular and for the indoor positioning field in

general to be addressed.

1.6 Thesis outline

The structure of the remainder of this thesis is outlined below. Each chapter aims to address

parts of the research questions posed above. The logical progression of work is described

graphically in Figure 1.3.
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Fig. 1.3 Thesis progression.

Chapter 2 presents the concept of location fingerprinting, for which the remainder of the
thesis will build on. Some popular machine learning techniques which have been used for
fingerprinting along with their performance accuracies in the literature are discussed. The
chapter also presents the datasets to be used in this thesis.

Chapter 3 describes a clustering algorithm to improve the inquiring speed of the finger-
printing training database.

Chapter 4 describes the concept of Conformal Prediction, and presents two underlying
classification and regression algorithms to provide a confidence level alongside the predic-
tion of the user position.

Chapter 5 demonstrates a novel feature for fingerprinting to allow the system to predict
in advance the intended route and the potential destination for a regular user. It explains the
use of the magnetic field strength in the form of the walking trajectories, and compares it to
the WiFi signal strength.

Chapter 6 presents an approach to detect the missing Access Points during a WiFi scan,
and outlines a scheme to compensate for this unwanted problem by estimating the missing
signals.

Chapter 7 presents the results of a series of experiments to assess the feasibility of using
the public outdoor WiFi Access Points and the mobile phones to co-locate the people’s
position. It describes two algorithms to calculate the matching rate of two WiFi signal
vectors, and compares the results with the ground-truth GPS distance.

Chapter 8 summaries the results obtained from the work carried out in this thesis, and

outlines possible avenues for further research.






Chapter 2
WiFi location fingerprinting

“I do not think that the wireless waves I have discovered will have any practical
application.”

— Heinrich Hertz.

WiFi fingerprinting is a decade mature technology, which has been the subject of much
research interest from the academia, and has also attracted developments from the big
companies such as Google and Apple. Given such promising attentions, what is it that
prevents the widespread adoption of fingerprinting for every building in the real world?
This chapter outlines the state-of-the-art and the challenges of WiFi fingerprinting, to be
addressed in the later chapters of this thesis. It presents the machine learning approaches to
fingerprinting, along with the description of the most popular learning algorithms. Then, it
compares the performance of these algorithms implemented in the most noticeable fingerprint-
based systems in the literature. It reviews the performance of fingerprinting amongst other
well-known techniques, including those competing in the recent Microsoft 2014 indoor po-
sitioning competition. Finally, the chapter concludes by introducing the test beds to be used

in this thesis.
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2.1 Introduction to fingerprinting

Compared to the outdoor space, the indoor environment is more challenging for most wire-
less signal based technologies to work reliably. While the standard satellite signals such
as GPS struggle to penetrate the building structure, other indoor wireless technologies such
as WiFi or Bluetooth could not rely on their standard properties such as the time-of-flight
(ToF), the angle-of-arrival (AoR) or the received signal strength (RSS) measure to calculate
the distance between two positions, because of the complex layout of the building. As the
wireless signals travel in the air, they reflect from the metal objects, diffract around sharp
corners, scatter off the walls, floors and ceilings, which result in multiple copies of the orig-
inal signal travelling in different directions. When two in-phase waves of the signal meet,
constructive interference forms a new stronger wave of signal. In contrast, two out-phase
waves will cancel each other out, resulting in a weaker version. The receiving signal at
the end user is a combination of these distorted products. This phenomenon is known as
the signal multi-path problem. Furthermore, the building is often crowded with many users

who move around to create a harsh and dynamic environment.

Fingerprinting, however, uses this challenging environment as its core function. The
indoor positions are manually calibrated to capture the full dynamic of the signal character-
istic at each position. Thus, the more diverse and tricky the signal propagation is, the more
unique the ‘location fingerprint’ is. Those training fingerprints will be matched against the
user’s real-time fingerprint to estimate his position. More details about the fingerprinting

processes will be discussed in the next section.

Fingerprinting was originally proposed with the WiFi RSS recorded by a laptop from
the nearby WiFi Access Points (APs) [5]. Since then, other wireless signals have been
tested with fingerprinting (e.g. Bluetooth, FM, Cellular). This thesis decides to use the
WiFi RSS and a smart phone as the main components to perform fingerprinting for two
reasons. Firstly, the WiFi AP is becoming a norm, and it is common to have many WiFi APs
indoors. Furthermore, they are starting to move beyond the buildings to provide a seamless
transitional coverage from the indoor space to the outdoor space. Secondly, most people
carry a smart phone with them wherever they are. These devices have the computing power
and the storage of a mini computer, as well as including a WiFi receiver. The properties
of the WiFi signal for fingerprinting are well-researched, and need not repeating in this
thesis [41, 42, 48, 56]. Instead, a more novel use of the WiFi RSS will later be discussed.
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2.2 The two phases of fingerprinting

This section discusses the inner processes of fingerprinting and the difficulties for each step

(see Figure 2.1).

Fingerprinting
to collect the training data
Database

I
I
I [Experrs survey the building
I
I

— |

I On-line positioning phase |
A J

I The user submits his signal The system estimates I
I data at an unknown position the user position

Fig. 2.1 The two phases of fingerprinting.

2.2.1 The off-line phase of fingerprinting

This phase is also known as the training or planning phase. The purpose of this phase is
to generate a training database (i.e. the fingerprinting database) to reflect how the signal
propagates inside the building. For WiFi fingerprinting, it is normally done by an expert
holding a WiFi-enabled device (e.g. smart phone, laptop) and walking around the building
to record the WiFi RSS at different training positions. Some key issues for the experts to

take into considerations are:

* How granular the tracking space is? The higher the granularity is, the more training
positions the expert needs to cover. The tracking zone is normally divided into a

metre-by-metre grid for the ease of planning.

* How often the measures are taken at each position? The WiFi signal is noisy,
thus, it is recommended to capture the full histogram distribution of the WiFi RSS by
measuring them repeatedly at each training position.

* How to label the signal data? Most fingerprint-based systems used their own co-
ordinate metric (e.g. the Earth’s latitude and longitude) to label the training WiFi

RSS. Others used a more human-readable presentation (e.g. room number).
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The first two plans directly decide the type of the fingerprinting algorithm to be used
in the positioning phase. In most cases, they also affect the performance accuracy of the
system. For instance, it may not be reasonable to expect a low-grained fingerprinting dataset

with too few signal measures to perform well with any algorithm.

The challenges at this phase are the sheer amount of the building space to be meticu-
lously surveyed, the time it takes to perform such process, and the lack of physical reference
for the training positions. Some works have attempted to alleviate the first two challenges
with a robot [33, 40, 64]. However, the robot does have its own problem of knowing where
it exactly is in the building. Others relied on crowd-sourcing to train the system automati-
cally [10, 14]. However, the lack of ground-truth references is a major challenge to label the
crowd-sourced data. Other researchers set up landmarks in the building, where the users can
contribute manually [52, 53]. Others used an independent tracking system (e.g. Active Bat)
to provide the location references for fingerprinting [88]. Despite the above challenges, this

training phase normally needs to be performed once at the beginning for every building.

2.2.2 The on-line phase of fingerprinting

This phase is known as the positioning phase or the estimation phase. It will be performed
whenever the user wishes to discover his whereabouts. For WiFi fingerprinting, the user
needs to carry a WiFi-enabled device (e.g. a smart phone) to measure the WiFi signal at
his current unknown position. Given this real-time WiFi reading, the system looks up the
training database generated in the previous phase to estimate the user position based on the

surveyed co-ordinate labels.

There are two main challenges at this phase. Firstly, the new WiFi signal sample from
the user may not fully represent his current unknown position, because the environment is
distorted at the time of measuring, or because of the nature of the WiFi scanning process.
This challenge will be addressed later in Chapter 7. Secondly, the system must decide in
advance the type of algorithm to estimate the user position. If the training database includes
multiple signal readings per location, a probabilistic approach is preferred. In contrast, if
only a single signal reading is available per training location, a deterministic approach is the

only option. The algorithms for each category will be discussed later in this chapter.
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2.3 State-of-the-art and challenges

Most indoor positioning systems were judged solely on their affordability and accuracy.
However, a highly adoptable system should also address the following criteria, which will
be discussed from WiFi fingerprinting’s viewpoint.

The availability is fingerprinting’s main strength, thanks to the ubiquitous indoor WiFi
network. Other long range outdoor signals such as the FM radio and the Cellular net-
work may be used in conjunction with WiFi to boost the indoor coverage. Theoretically,
fingerprint-based systems are always available anywhere within the coverage distance of
the indoor WiFi signals.

The installation is simple from the users’ viewpoint. They only need to install an
app on their mobile devices, or a piece of software on their laptops, tablets, and allow it
to sniff the WiFi signals to enable the tracking capability. However, the set-up process is
more challenging for the administrators. A new building will require manual calibrations to
generate the training database at the beginning.

The reliability of the fingerprint-based systems is normally high, because they piggy-
back on top of the existing WiFi network in the building, which is highly robust to provide
the constant communication service to the users.

The cost to deploy a fingerprint-based system is minimal, because there is no need to
install additional infrastructure. The WiFi network is already widely available in many
buildings. In addition, most people possess a smart phone, which has the computing power
and the storage to process the fingerprinting database. In case the training database is too
large, it may be stored on a central server.

The scalability is one of the weaknesses of fingerprinting, if the central server is in-
volved in the fingerprint-based system. The server may struggle to process a large number
of inquiries from many users simultaneously, especially when the fingerprinting database is
huge.

The maintainability is challenging for fingerprinting. The training database will be-
come outdated over time because the old furniture is re-arranged or the new one is added
into the environment; and to re-survey the whole tracking zone requires much labour work.

The complexity and speed of fingerprinting mostly depend only on the size of the
training database. In most cases, every training example needs to be considered once to
estimate the user position, which may be a burden for large buildings. However, it can be
addressed via techniques such as clustering, which will be discussed later in this thesis.

The accuracy (or positioning error) of WiFi fingerprint-based systems are widely ex-
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pected to be around room-level on average for most indoor environments, which is moder-
ate, compared to other sub-metre infrastructure-based systems which makes use of dedicated
hardware. Overall, the past literature suggested that the amount of infrastructure needed to
deploy a positioning system and its accuracy seem to be correlated (see Figure 2.2). It is
clear that the lower left corner of the figure is still missing where none of the current indoor
positioning systems can yet fill in. Fingerprinting is the most balanced approach, and this

thesis will attempt to bring it further left on the x-axis.

Infrastructure required

1,,61_%1 RFID

WiFi, BLE  Cellular

Imm Iem 10cm Im 10m
Positioning accuracy

Fig. 2.2 A rough correlation of the amount of required infrastructure for the indoor position-
ing technologies and their accuracies. The x-axis is presented in log scale.

The precision of the fingerprint-based systems depends on the quality of the wireless
signal. With WiFi fingerprinting, the receiving WiFi RSS from the mobile device has a high
degree of variation, because of the indoor wireless signal’s multipath effect. Furthermore,
the density of the indoor users and their movements have an impact on the WiFi signal too.
This is a common challenge for the application of radio signals for fingerprinting, since they
were not originally designed with the positioning purpose in mind.

Other aspects such as security, risk were not discussed since they are beyond the scope
of this thesis. The challenges of fingerprinting including the scalability, the accuracy and
the precision will be addressed in this thesis. The approaches to be discussed in the later
chapters are software-based, which rely solely on the wireless signals’ information. The
author believes this direction is important to maintain the core infrastructure-free concept

of fingerprinting.
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2.4 Machine learning approaches to fingerprinting

There are three classes of machine learning in general based on the design of the train-
ing database, which are ‘Supervised learning’, ’Unsupervised learning” and ‘Reinforcement
learning’. While the supervised learning approaches require all training examples to have
both the object and the label associated with it, un-supervised learning ones deal with non-
labelled training examples. Reinforcement learning, on the other hand, lies between su-
pervised learning and un-supervised learning, since it does not have a label for all training

examples, but only sparse and time-delayed feedbacks, which are called the rewards.

Machine learning
based
Fingerprinting

./I\.

[ Supervised learning ] [ Un-supervised learning ] [ Reinforcement learning ]

Classification Regression
approaches approaches

Fig. 2.3 Machine learning approaches to fingerprinting.

For fingerprinting, the training database has both the WiFi RSS (i.e. the object) and the
associated Cartesian co-ordinate (i.e. the label). Therefore, it clearly favours a supervised
learning approach. However, it is possible to ignore the Cartesian label, and applies un-
supervised learning approaches (e.g. clustering) to divide the training examples into groups
of similar WiF1 RSS, which will be used to speed up the inquiring process, to be discussed
later on in this thesis. Reinforcement learning approaches, however, are not truly suitable
for fingerprinting, because there is often no such rewards telling the positioning system of
how well it is performing at any stage. The remaining of this thesis will mainly dedicate on
supervised learning approaches for fingerprinting.

For supervised learning, there are two main approaches based on the type of the train-
ing labels. They are ‘Classification approach’ and ‘Regression approach’ (see Figure 2.3).
With classification, the training labels are seen as discrete finite variables, whereas, they are

considered as infinite random variables with regression. At a quick glance, the Cartesian
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Fig. 2.4 Fingerprinting supervised learning models to be covered in this thesis.

labels of the WiFi RSS represent discrete finite indoor positions, thus, the classification ap-
proaches are overwhelming in favour to be the candidate for fingerprinting. However, at
a closer look, these labels are real numbers. Thus, when there are too many training po-
sitions, the classification approaches may execute too slowly, and a regression model will
be more suitable. In summary, both classification and regression approaches can be used
for fingerprinting. A more preferred means to categorise supervised learning approaches for
fingerprinting is to look at how they estimate the user position. Most approaches first use the
training database to create a model, then use that model to predict the outcome (the label)
for a new sample. The algorithms to be discussed in this chapter are Naive Bayes which
uses a probability model, and ridge regression which uses a linear model. However, there
are other approaches that skip the model part and go directly from the training examples to
predicting the outcome, such as K-nearest neighbours (see Figure 2.4). These algorithms

and their real world performances will be discussed in this chapter.

2.4.1 Modelling the WiFi fingerprinting problem

Without loss of generality, the location fingerprinting problem is formally modelled as fol-
lows. The database indexes M training examples 7; = (Iﬁ,, f,)) (1 <i<M). Each example
T; represents a training position, where Iﬁ is the WiFi RSS vector observed at that posi-
tion, and f; = (dj;,d;l) is the 2-dimensional Cartesian label of the position. The WiFi RSS
vector contains all the individual RSS from N nearby APs, RSS, = (APL,...,AP}), where
AP; is the RSS received from the AP 7™ (1 < j < N). Tt is possible that there are duplicated
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L; in the training set, because the WiFi RSS are captured several times at the same position.
Table 2.1 illustrates such training database. There may be other features attached to each

training example such as the user orientation, the time of measure, the calibration device.

Table 2.1 An example of the fingerprinting database.

Position label WiFi RSS measurement

(51, 136) (-57, -41, -62, -59, -86, -91)
(51, 136) (-57, -42, -60, -58, -87, -93)
(51, 146) (-59, -36, -65, -58, -82, -95)
(51, 156) (-56, -38, -69, -58, -84, -93)
(51, 156) (-54, -35, -69, -57, -84, -95)
(51, 166) (-63, -32,-73, -57, -87, -99)
(51, 176) (-67, -33, -68, -60, -91, -99)

P ...
The task is, given a WiFi RSS vector RSS, = (AP{,...,APf;) at an unknown position u
. . =
lying somewhere in the tracking zone, the system estimates the Cartesian label L, = (d¥, d;‘)
for this position.

2.4.2 Classification fingerprinting with weighted K-nearest neighbours

Given a set of M labelled training examples 7; = (Iﬁl, E)) (1 <i< M), and an un-labelled
new sample S, = (IWS; ,I?u)), the most convenient method to estimate the position Eu) is to
find a training example 7; that is closest to S, in terms of their RSS vectors’ difference.
A possible means to calculate the difference of two RSS vectors is by using the Euclidean

distance as follows.

N
, . : .
Dist(RS?,-,RSSu):Dist((AP{,...,AP;V),(APIM,...,AP]@)): Y (AP,—APY)2 . (2.1)
p=1

Since there may be more than one training example with a similar Euclidean distance to
Su, or the nearest training example may not necessary be the correct one, it is recommended
to take a set of K training examples with the smallest Euclidean distances. A weight will
be introduced to penalise the training examples that are further away. This weight may
be calculated as the inverse Euclidean distance of the WiFi RSS between each K training

example and the new sample [35]. The estimated weighted location L, is calculated below
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(¢ 1s a small constant to avoid division by zero).

K
1
L RSS; RSS L
L _ =1 Dist(RSSi,RSS.)+e 2.2)

f 1

Dist(RSS;,RSS,) + €

This approach is known as Weighted K-nearest neighbours (W-KNN) [37, 77]. It is
amongst the simplest learning algorithms. The disadvantage of this approach is the need to
go through all training examples to calculate the Euclidean distance every time a new sample
is presented. It also requires a pre-determined K value which may impact the prediction

result if not chosen properly.

2.4.3 Classification fingerprinting with Naive Bayes

The probabilistic approach to fingerprinting addresses one important challenge of the indoor
WiFi signal. That is, the WiFi RSS observed from the same AP varies, even in the same
position. It is possible that the training RSS and the real-time RSS are not similar even
though they come from the same position. Therefore, with this approach, the WiFi RSS are
captured repeatedly at each training position to record the full signal distribution of each
AP.

Given the real-time RSS vector ITS; at an unknown position, the algorithm calculates
the posterior probability P(7; |ITSM) of this unknown RSS vector being observed at the train-
ing position 7; (1 <i < M). The training position with mlax(P(Ti|IFSu>)) will be chosen as

the estimated position. Following Bayes’ rule, this probability is calculated as [98]:

P(RSS,|T;) P(T;)

P(Ti|RSSu) =
P(RSSM)

(2.3)

As P(T;) and P(RSS,) are known, the remaining problem is to calculate the reverse

probability P(ITSMT,) However, calculating this probability is challenging, because the
combination of the RSS from different APs for this vector ITSM may not be recorded at
any training example. However, by assuming independence for individual RSS, the Naive
Bayes approach can be applied to calculate the individual posterior probability for each RSS

as follows. N
RSS ;) = [ [ P(APYIT:) (2.4)

j=1
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Since the WiFi APs mostly do not interfere with each other, this is a fair assumption.
The individual posterior probability P(AP{|T;) can be calculated based on how often the
individual RSS of the AP; appears at the training location 7;, which is much easier than

calculating the probability of the whole RSS vector.

number of times AP; appears at location T;

P(AP!|T;) = (2.5)

total number of readings observed at location T;

Overall, the probabilistic approach takes into account the probability distribution of in-
dividual RSS reading, whereas W-KNN uses a single RSS vector per location. The disad-
vantage of the probabilistic approach, however, is that capturing the full signal distribution

at each training location is time-consuming.

2.4.4 Regression fingerprinting with ridge regression

The regression technique is only applicable if the signal label is in the numeric format (e.g.
latitude and longitude). While the above classification approaches try to classify the new
ITSM into one of the training examples, the regression approach tries to find a model that
fit all training examples 7; = (R-Sz,f,)) (1 <i< M). This model will be used to predict
the Cartesian label I:Z for the new vector RSS,. Ridge regression is one of the most popular
machine learning techniques for regression [22]. Before introducing ridge regression, let’s
re-cap the mean-squared error (MSE) method, for which ridge regression was based on.
When the user provides the signal IT&%, the trained model predicts the positioning label
as f (Iﬁ) Assumed that the true positioning label is known as y(ITSjS‘), the MSE can be
calculated as.

MSE = {(y(RSS) - f(RSS))%) . 2.6)

where (...) indicated the averaging. This MSE score reports how good the averaging pre-

diction is. It can be further described as.
MSE = (y(RSS) — (£(RSS)))* + ((f(RSS) — (f(RSS)))?) . @.7)

where (y(RSS) — (f(RSS)))? is called the bias, and ((f(RSS) — (£(RSS)))2) is called the

variance.

Ridge regression is similar to MSE, however, it introduces a tuning parameter called the

ridge factor A > 0 to control the balance between fitting the data and avoiding the penalty.
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The ridge regression model is described below.

<

M=

1

N
(Li —w-RSS)+ Y Aljwj| 2 . 2.8)
=1

I
—_

where w; (1 < j < N) are the weights for the WiFi APs. The closer the value of A is to
zero, the more linear the regression model becomes, or the tighter the data will be fit. The
bigger the value of A is, the closer the model is shrank to zero, or the larger the weights are.
It is preferred to have a balanced A to fit a linear model, and to shrink the co-efficient at the
same time. This approach may introduce some bias, but has been proved to greatly reduce
the variance, which results in a better MSE [22].

The objective is to find the optimal weights w* so that .# — min. The prediction Carte-

—
sian label L—,: = (dy,dy) for the new sample RSS), is obtained as follows. For fingerprinting,

where there are two Cartesian labels x,y, each dimension is predicted separately with a

different model.
T

d" = w,-RSS, . (2.9)
d" = w, -RSS, (2.10)

The benefit of the regression approach is the high estimation speed for any new sample
using the model, which was generated in advance to represent the whole training database.
There is no need to go over each training example to find the best match as in the case of

classification.

2.5 A comparative performance review of fingerprinting

Fingerprinting is a decade mature technology. How is it keeping up with other infrastructure-
based systems, and especially with the latest trends such as inertial based tracking in the
same infrastructure-free category? This section assesses the performance accuracy of WiFi
fingerprinting in a Microsoft competition where all contestants were ranked under the same
test domain. The underlying algorithms of fingerprinting are then analysed individually to

understand which options are suitable to perform fingerprinting.
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2.5.1 Performance review of fingerprinting at the Microsoft IPSN com-

petition

Since 2014, Microsoft have been organising a yearly indoor positioning competition, where
the competitors from the academia, the industry and start-ups come together to evaluate their
latest technologies in a realistic, unfamiliar environment. For Microsoft IPSN 2014, the
2,500 square feet evaluation area includes two rooms and the hallway surrounding them'.
It is interesting to see how well fingerprint-based systems performed in this same test envi-
ronment with other systems. There were two pure WiFi fingerprint-based only systems in
this competition (MapUme & Nanyang). Inertial based tracking dominated the selection of
the remaining contestants in the infrastructure-free category. There was no WiFi fingerprint

based only systems enrolled in the following two subsequent years.

12
Dlnfrastructure-based systems
i _'WiFi fingerprinting only |
10 1 "‘Other infrastructure-free systems

Positioning error (m)

.éoogogojbwoomwQQng&OO@
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Fig. 2.5 Performance accuracy of fingerprinting at Microsoft IPSN 2014 competition.

Figure 2.5 compares the performance accuracy of the systems enrolled in this competi-
tion, where WiFi fingerprinting ranked 2" and 7'* with the positioning accuracy of 1.6 m
and 2.22 m respectively, out of 22 contestants including some best papers at the international
conferences. In particular, the same fingerprinting systems came 1% and 3" amongst all 9
infrastructure-free systems. The big surprise was that some hybrid fingerprinting and iner-

tial tracking systems performed less accurate than these two pure fingerprint-based systems.

Thttp://research.microsoft.com/en-us/events/ipsn2014indoorlocalizatinocompetition - last accessed in
Sep/2016.
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Perhaps the sensor noises from the mobile phone degrade the positioning accuracy of those

hybrid systems. Overall, this is a highly encouraging result for fingerprint-based research.
It is worth noting that many of the systems participating in this competition came from

the industry and did not reveal much of their underlying algorithms. The next section as-

sesses the impact of different machine learning algorithms for fingerprinting.

2.5.2 Performance review of the machine learning approaches to WiFi

fingerprinting

This section assesses the most popular machine learning algorithms for fingerprinting in the
literature. In particular, they are W-KNN, Naive Bayes, Neural Network and Histogram.
The Histogram method simply compares the WiFi RSS distribution of both the test posi-
tion and the training position. The neural network approach uses a mathematical model to
recognise the patterns in the database. Once the neural network has been trained on the
examples of the fingerprinting database, it is able to predict by detecting similar patterns for
the new samples. The experiments were conducted and reported under the same test domain
by three independent review papers [20, 35, 56]. To emphasise on the performance of the
algorithms, all reviewed systems are WiFi RSS based only. No other technique apart from
fingerprinting was employed in these systems.

The first review was conducted in a corridor of 24.6 m by /7.6 m, with at least 5 nearby
WiFi APs [56]. A total of 84 training positions were recorded, with /00 readings of the WiFi
RSS per position. The training dataset’s granularity was / m. Figure 6.5a demonstrated
that W-KNN had the most accurate performance at 3./ m, 95% probability. However, it
was suggested that the higher the number of training examples per location is, the more
performance gain the Naive Bayes approach may have (see Figure 6.5b).

The second review was conducted on a floor of 2, /60 square metres, which is five times
larger than the first review’s [20]. However, the training points were much sparser with a
granularity of 6.2 m covering 56 positions. This sparse training set was compensated by
a denser histogram of 224 WiFi RSS per position, covering all 4 orientations (N/W/S/E).
This review compared /7 variations of K-NN and Naive Bayes. Giving such strong RSS
coverage for each training position, Naive Bayes was expected to triumph. However, W-
KNN slightly edged out again at 2 m positioning error on average, compared to that of
2.3 m for the Naive Bayes approach (having applied the filter mode) (see Table 2.2). This
review noticed that the Naive Bayes approach achieved competitive performance with fewer
APs than W-KNN.
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Fig. 2.6 Performance accuracy of W-KNN, Naive Bayes and Neural Network, reported in
the first review [56].

Table 2.2 Performance accuracy of nearest neighbours and Naive Bayes, report in the second
review [20].

Algorithms Average positioning error (m)
Weighted K-nearest neighbours, 29
with best orientation )
Naive Bayes with filtering 2.3
Average of all K-nearest

. 2.7
neighbours
Weighted K-nearest neighbours, 32
closest to all 4 orientations ’
Probabilistic Naive Bayes 33
1-nearest neighbour 53

The third review was conducted over 3 floors in a university building with a total of
177 training positions, although it was unclear what the granularity of these training points
was [35]. The WiFi RSS was recorded repeatedly for 60 seconds at each position, which
is expected to collect about half the amount of the WiFi RSS as in the second review. This
review compared the performance accuracy of W-KNN, Naive Bayes and the Histogram
method. The Histogram approach compares the WiFi RSS distribution of both the test
position and the training position, using Kullback-Leibler, Lissack-Fu. This method may
not be applicable in the real-world, where it is difficult to obtain more than one reading per
location for the moving users in real-time. In this review, Naive Bayes came up on top at
12.3 m positioning error, 95% probability, while W-KNN was just slightly behind at /3.7
m, 95% probability.

In summary, all three review papers suggested that with only the WiFi RSS as the mea-
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Table 2.3 Performance accuracy of nearest neighbours and Naive Bayes, report in the third
review [35].

Algorithms Average positioning | Median | Max | 95 %

error (m) (m) (m) (m)
Probabilistic Naive Bayes 54 4.1 98.6 | 12.3
Weighted K-nearest neighbours 5.6 4.4 119.6 | 13.7
Histogram 7.0 5.0 106.0 | 194

surement metric, many complex algorithms may not perform as well as simpler ones. De-
spite its simplicity, W-KNN excelled in most fingerprinting reviews. It is worth noting that
the MapUme system that came second over 22 contestants in the Microsoft IPSN 2014
competition also employed W-KNN as the main underlying algorithm. However, the Naive
Bayes approach improves its accuracy as the number of training examples per location is
high, which is an indication that beside the WiFi RSS, additional information will be needed

to enhance the performance of fingerprinting further.

2.6 The fingerprinting test beds

This thesis uses three test beds. The first one (Royal Holloway) was manually collected
by the thesis’ author in a standard office’s environment using a smart phone. The second
one (Cambridge) was collected automatically by a robot designed by the thesis’ author in
a fairly ideal environment, supported by an independent tracking system for ground-truth.
The last one (UJIIndoorLoc) covers a huge indoor area spanning across 3 buildings in a
very challenging environment. All three test beds are available for further research?. The
UllIndoorLoc dataset is publicly available from the UCI Machine Learning Repository?,
and has recently been used for the EVAAL 2015 fingerprinting competition*. Each test bed
has a large training database which includes both the signal measure (i.e. the WiFi RSS) and
its label (i.e. the positioning co-ordinate); and a smaller test database which was collected
randomly and separately to provide the test samples that may not be covered in the training

set. Their detailed information are described below.

Zhttp://www.cs.rhul.ac.uk/~wruf265/datasets/ - last accessed in Sep/2016.
3https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc - last accessed in Sep/2016.
“http://evaal.aaloa.org/current-competition/track-3 - last accessed in Sep/2016.
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2.6.1 Royal Holloway test bed

This test bed was collected on the ground floor of the McCrea building at Royal Holloway,
University of London. The floor plan of 45.4 m by 32.6 m composes of 3 corridors and 27
offices. Most of the tracking space was in the corridors (see Figure 2.7). There were 9 WiFi
APs directly inside the building to provide strong RSS (see Figure 2.8). There were also
many other weaker APs from nearby buildings which brought the total number of WiFi APs

in the training set to /3/. Any training position can observe at least 28 APs.

(a) South corridor. (b) Southeast corridor. (c) East corridor.

Fig. 2.7 The Royal Holloway test environment.

This dataset was generated in a standard manner, taking into considerations of the
lessons learnt to produce a good training set. For instance, the granularity was / m to cover
most positions in the building. Each training position recorded 200 readings to capture the
full WiFi RSS variation, and also for the probabilistic methods to work well. The orienta-
tion of each training example also covered the four main cardinal directions (N/W/S/E). The
collection time was short to avoid the temporal environmental changes. Furthermore, this
dataset covers both the WiFi RSS and the magnetic field data, which will be useful for an ap-
proach to be discussed later in Chapter 5. The mobile device used to collect the fingerprints
was the Nexus 5. An app was developed to support the training process (see Figure 2.9).

Out of the three test beds, this one has the highest number of measure per training location.

2.6.2 Cambridge test bed

This test bed was collected on the second floor in the North corridor of the Computer Lab
at the University of Cambridge. The tracking space contains a long corridor of 45 m by /.7
m, and a single room of about 29.3 square metres (6./ m by 4.8 m) (see Figure 2.10). There

were 5 WiFi APs inside this area to provide strong RSS, in which 4 APs were positioned at
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(c) The number of WiFi APs covered by the training positions.

Fig. 2.8 The coverage of the WiFi APs of the Royal Holloway test bed.

the two ends of the corridor, and / AP was in the middle of the corridor. There were also
weaker APs from the surrounding areas. In total, there are 450 training positions along the

corridor and 7,500 training positions in one single room.

A robot designed by the thesis’ author was used to collect the training fingerprints (see
Figure 2.11). It carries a netbook (Sony P-115) on its back, and an Active Bat tag attached
to its head. The netbook has a Java program which is responsible to co-ordinate the robot
movements, and to record the WiFi RSS and the Cartesian label provided by the Active Bat

system. More details about this robot can be found in [64].

The highlights of this test bed are the high precision of the reference labels provided
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Fig. 2.9 The Android app used to collect the fingerprints for the Royal Holloway test bed.

by the Active Bat system (up to 3 cm error, 95% probability), and the fine-grained /0 cm
resolution of the training space (30 cm resolution for the corridor) that was made possible
only with a robot. The environment of this test bed was fairly ideal, with a wide and long
corridor, and an empty room with no furniture. The training set was compiled over the

weekend with no people around.

2.6.3 UJlIndoorLoc test bed

This dataset covers 3 buildings of 770,000 square metres of the Universitat Jaume I in Spain,
with a total of /3 floors (see Figures 2.12 and 2.13). Out of the three test beds used in this
thesis, this is the only one covering multiple buildings and floors. It was used in the EVAAL
fingerprinting competition in 2015°.

The challenge of this dataset is not just the sheer amount of tracking space, but also the
nature in which the dataset was generated. Firstly, there were 25 different mobile devices
involved in the process. Secondly, /8 contributors used those devices to record the WiFi RSS
without any pre-arrangement. Thirdly, the user taps on the touch screen to label the recorded
WiFi RSS. Then, a central server converts this rough estimation into a numeric latitude and
longitude label. With so many different contributors, their expectations may be different,
therefore, the labels they provide may not be uniform. Lastly, the data collection time was

long (20 days) and the two test sets were collected 3 months and /8 months afterwards,

>http://evaal.aaloa.org/current-competition/track-3 - last accessed in Sep/2016.
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(d) The number of WiFi APs covered by some training positions, at 1 m resolution.

Fig. 2.10 The Cambridge test bed.

which no longer reflect the original state of the indoor infrastructure. These conditions

make this test bed highly challenging for any algorithm to estimate the user position.

2.6.4 Summary of the three test beds

In summary, the three fingerprinting datasets used in this thesis were selected to represent
three different indoor environments, which include a standard one (Royal Holloway), an
ideal one (Cambridge) and a challenging one (UJIIndoorLoc). The Royal Holloway dataset
has the highest number of measure per location, while the Cambridge one has the highest
training resolution. Out of the three test beds, the UJIIndoorLoc dataset covers the widest

indoor space. The majority of the WiFi RSS in all three datasets were around [-80 -70]



2.7 Summary 33

Fig. 2.11 The LEGO robot used to collect the fingerprints for the Cambridge test bed.
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Fig. 2.12 The WiFi RSS distribution of the UJIIndoorLoc test bed.

(dBm). Table 2.4 summaries the characteristics of the three test beds.

2.7 Summary

Fingerprinting has demonstrated its promising potential over the years not just on the re-
search papers, but also in the official competitions with other positioning systems. The strat-
egy to design a suitable algorithm for fingerprinting depends on how the training database
was generated. A fine-grained dataset with a dense histogram distribution of the WiFi
RSS for each training position will favour a probabilistic approach, although much effort

is needed to compile such dataset. Whereas, a sparser training set will favour a determinis-
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Fig. 2.13 The coverage of the WiFi APs of the UJIIndoorLoc test bed.

tic approach. Many review papers suggested that W-KNN is still the most accurate approach
for fingerprinting, despite its simplicity. This is also an indication that complex algorithms
may not improve the performance of fingerprinting much further with the WiFi RSS as
the only measure. Therefore, the next chapters in this thesis will consider other additional

information which may be useful for the fingerprinting research.
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Table 2.4 Summary of the three fingerprinting test beds used in this thesis.

by the surveyor

Royal Holloway Cambridge UlJIIndoorLoc
Abbreviation RH Cam Ull
Training examples 13,600 78,000 19,937
Training area 1,480 m? 540 m? 110,000 m?
Surveyed space 3 corridors 1 corridor, 1 room 3 buildings
Training time 1 day 2 days 20 days
Granularity I m 10 cm for room Upto2m

30 cm for corridor
Test samples 150 100 1,111
Last test sample Same day 1 day later 3 months later
Fingerprint type Individual + Sequence Individual Individual
Fingerprint metric WiFi RSS WiFi RSS WiFi RSS
Magnetic field strength
Measuring time Working hours Weekend Working hours
i\fc";‘;‘;;es per 200 40 Up to 30
Distinct positions 68 1,950 933
100 z;iril(fitions per 4 4 Unknown
Label type Cartesian Cartesian Longitude
(metre scale) (metre scale) & Latitude

Label generator Manually Automatically Manually

by Active Bat system

by the surveyor

Total building(s) 1 1 3
Total floor(s) 1 1 13
mﬁl ;‘“ess 131 43 529
Device(s) used 1 phone 1 netbook 25 phones
Surveyor(s) 1 person 1 robot 18 people







Chapter 3

Off-line fingerprinting database

processing with clustering

“Divide each difficulty into as many parts as is feasible and necessary to resolve
it.”

— Rene Descartes, Discourse on the method (1637).

One of the challenges of fingerprinting is the database inquiring process, which does not
scale well with the increasing number of simultaneous users, and the huge amount of track-
ing space to be covered. This chapter addresses this issue with the popular clustering tech-
nique. However, the chapter realised the key difference between fingerprinting and other
un-supervised clustering problems is that the Cartesian label of the signal data is known in
advance with the fingerprinting dataset. This information was mostly ignored in the litera-
ture, where fingerprinting clustering was based solely on the WiFi RSS. By exploiting this
concept, the chapter introduces a two-level clustering process, involving both the WiFi RSS
and the Cartesian label. This chapter will demonstrate that the proposed scheme does not

only reduce the searching time, but also improves the positioning accuracy.
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3.1 Introduction to fingerprinting clustering

Clustering is an un-supervised learning technique to partition the data into groups with sim-
ilar characteristic. It is particularly useful to find the structure of the non-labelled datasets.
The clustering techniques are diverse, and can be classified into two general categories.
Firstly, is the technique hard clustering or soft clustering? The former partitions the dataset
into disjoint groups (e.g. K-Means (KM)), while the latter allows the data point to be a mem-
ber of more than one group (e.g. Mixture of Gaussians (MoG), Fuzzy C-Means (FCM)).
Secondly, is the method flat or hierarchical? Flat clustering such as KM generates a set of
clusters with no explicit information to describe the relationship amongst those clusters. On
the other hand, hierarchical clustering such as agglomerative uses a tree-like structure to

describe the clusters.

Since fingerprinting involves a large training database, clustering has been a compelling
approach to organise this dataset for faster real-time searching. For fingerprinting, all of
the above clustering techniques can be applied. However, most fingerprinting clustering-
based approaches only utilised the WiFi RSS to structure the dataset [2, 21, 55, 83, 92].
The label of the WiFi RSS has mostly been ignored in the main clustering process. In
this chapter, four modular steps of a novel clustering scheme which involves both the WiFi
RSS and the Cartesian label will be discussed. The chapter opted for a soft clustering
technique (MoG) with a two-level tree-like structure, which it believes is a suitable match
for fingerprinting for three reasons. Firstly, when the user stands at the borderline of two
clusters (e.g. near the wall between the two rooms), he may be misallocated to the wrong
cluster. This is a challenging scenario for hard clustering techniques such as KM. Secondly,
recent researches pointed out that other clustering techniques such as KM and FCM are
sensitive to the training dataset whose training examples are not distributed homogeneously
in all dimensions [95]. This problem is well addressed with a mixture model, where the
membership function is defined as a probability and the objective function is defined as a
likelihood function, to be discussed later in this chapter. Finally, the fingerprinting database
is noisy, therefore, the training examples that are grouped into the same cluster in terms of
the WiFi RSS, may not be near each other at all in terms of their Cartesian co-ordinate. This
is because of the signal multi-path problem described earlier in Chapter 2. This challenge

will be addressed with the clustering processes, to be discussed in the next sections.
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3.2 Selective mixture of Gaussians clustering

This section presents the four modular steps of the proposed clustering process. Their details

are as follows.

3.2.1 Finding overlapped clusters from the training database with mix-

ture of Gaussians

Mixture of Gaussians (MoQG) is a probabilistic model-based clustering technique, which
uses the Gaussian distribution to model each cluster [9]. This chapter does not attempt to
model the WiFi RSS distribution, which may not be Gaussian at all. Instead, it tries to find
a model that best fit the entire fingerprinting database. To achieve this goal, a Gaussian
distribution model is fit into each group of the WiFi RSS from the training database. The
entire dataset is a sum or a mixture of these Gaussian distributions. In contrary to the
popular belief that a Gaussian distribution can only be used to represent normally distributed
data, a mixture of a sufficient number of Gaussians can represent any data model. The
Gaussian distribution is chosen to model each cluster, because of its simplicity, and the ease
to estimate the model parameters, which will be discussed later.

The following multivariate Gaussian distribution function is used to calculate the prob-
ability that a WiFi RSS vector RSS, = (APf,...,APy) can be observed, with AP} is the RSS
(dBm) of AP " (1 <i < N), given the mean vector u and the covariance matrix X of a

certain cluster.

P(RSS,|u,X) =

(2)

1 o~ 3 (RSS:—p)' =~ (RSSy—p) (3.1

Z[2

1
N
2

Let’s assume that the fingerprinting database D can be modelled by k& Gaussian compo-
nents (clusters). More details about choosing the value of k will be discussed later. Each
Gaussian component .4 (1;,Y;) is given a non-negative weight @; to represent the likeli-
hood of occurrence of that component. These weights are important to help deciding which
component (cluster) a new sample belongs to later on. For example, it is more likely that
an un-observed sample belongs to the cluster with the highest weight. All these weights
must sum up to / to maintain the probability distribution property of the model. The entire

fingerprinting database’s model is a mixture, or a weighted sum of these k clusters.

P(D|CO,‘LL,E):(1)1</V(D|‘LL1,EI)++wk</I/(D|‘LLk,Zk) . (32)
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=~

P(D|o,u,X) = Zw, (Dl %), Y i =1 . (3.3)

The objective is to maximise the above probability P(D|®,u,X). In other words, the
mission is to estimate the value of all the parameters @y, W;, and X; (1 <i < k) simultane-
ously to maximise the probability of observing the fingerprinting database D. A well-known
solution to estimate said parameters is the Expectation-Maximisation (EM) algorithm [62].
It is a two-step iterative procedure, which starts from random guesses of the parameters.
In the Expectation step, the probabilities are calculated with the current values assigned to
the parameters. In the Maximisation step, these probabilities are then used to update the
parameters [95]. The Gaussian Mixture Model package of Matlab! was used to perform the
EM algorithm in this chapter.

In summary, by the end of this step, a model which best fits the WiFi RSS vectors
from the fingerprinting database is generated. Based on this model, a set of k£ overlapped
clusters is found to group the similar WiFi RSS vectors together. An WiFi RSS vector may
belong to more than one cluster, and each cluster has a weight to determine its likelihood of
occurrence in the probabilistic model. The advantage of such weight and the selection of k

will be discussed later on.

3.2.2 Deriving sub-clusters within a cluster

One of the challenges for indoor positioning is the multi-path problem, for which two further
positions in the building may have a similar WiFi RSS observation. When such training
positions are put together in the same cluster based on their RSS, some of them may not
be near each other at all in the Cartesian space. Figure 3.1 illustrates such phenomenon
found on the ground floor of the RH test bed. With 7 clusters generated by KM, there were
two clear islands which formed the black cluster, and three islands for the blue clusters.
Some of the blue members were found inside the cyan cluster, and they did indeed possess
similar WiFi RSS with the remaining members of the blue cluster. If a user happens to stay
in the minority portions of this blue cluster, his positioning prediction result estimated by
considering all members of the cluster will be pulled toward the majority of the blue cluster
on the left.

To tackle this challenge, the clustering process is performed again for each cluster found
in the previous step. However, the members of each cluster will be judged on their Cartesian

(x,y) co-ordinate, rather than the WiFi RSS vector used in the previous step. Ideally, if all

Uhttp://www.mathworks.co.uk/help/stats/gmdistribution-class.html - last accessed in Sep/2016.
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Fig. 3.1 Islands with similar WiF1 RSS visualised on a 2-D floor plan of the RH test bed.

members within the cluster are also close in the Cartesian space, only one big cluster will
be seen after this process. Otherwise, multiple sub-clusters will be generated. These sub-
clusters form a second layer in the proposed two-level clustering scheme. The first layer is
the parent cluster of these sub-clusters.

At the end of this step, many sub-clusters will be obtained, for which more than one
may have a similar WiFi RSS. However, all sub-clusters are guaranteed to possess different
Cartesian characteristics. For consistency, the term sub-cluster will be simply referred to as
cluster for the remaining of this chapter. The next part will discuss the strategy to select a

set of clusters to represent the user’s new signal data at his unknown position.

3.2.3 Selective clusters for on-line positioning

When a user wishes to discover his current position, he uses his mobile device to measure
the WiFi data RSS, at his location. The system will identify which clusters the user’s data
belongs to. This process is the most challenging and error-prone one for many clustering
algorithms. If the user’s signal data is put into the wrong cluster, the positioning accuracy
will degrade as a consequence. While most previous work picked only a single best matched
cluster, this chapter proposes to select a group of clusters instead. Since the probability
model of the fingerprinting database has already been constructed, the probability of any

new signal data to be associated to each of the k clusters can be calculated by substituting
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the new signal data RSS, and the two parameters W;,%; (1 <i < k) of each cluster into
Equation 3.4.

P(RSS, |, %) = e—%(RSSu—Mi)’E,-_'(RSSu—ui) ) (3.4)

By definition, these k probabilities will sum up to /. Therefore, a threshold (e.g. 90%)
can be specified and all clusters with the largest probability adding up to the threshold will
be selected. For example, with k = 3, and the three probabilities are 0.0, 0.2, 0.8, both the
second and third cluster will be picked, for a 90% threshold. A high threshold will demand
more clusters to satisfy, while a smaller one needs fewer clusters. Without loss of generality,
given a threshold value 6, (0 < 6 < 1) and a decreasing order vector of k probabilities

Pc=(Pl,...,P), aset of t probabilities (¢ < k) to minimise the below equation are found.
t .
arg mtin[z P> 0] . (3.5)
i=1

The next section will discuss how to estimate the user’s position, given the set of clusters

found in this step.

3.2.4 Finding the user position

At this stage, a set of clusters has been identified given the user’s signal data. this new
set of chosen clusters can be treated as a new, smaller fingerprinting database. The readers
may apply any favourite algorithm to estimate the user’s position, such as Naive Bayes or
W-KNN. Since the main purpose of this chapter is to accelerate the speed of fingerprinting
by reducing the search space via clustering, this section will not go over these algorithms
in detail. In the next chapter, a more extensive discussion of the algorithms to estimate the

user position will be outlined.

3.2.5 Tuning the value of k

Choosing the optimal number of clusters k is challenging. Importantly, a bigger value of
k does not necessarily mean longer running time, which is one of the criteria to judge the
clustering algorithm. Instead, the criteria for choosing k should be based on the structure
of the training database, which, unfortunately, is different for every training set. However,
since the clustering process needs to be done just once, it is possible to trial multiple values

of k, and a manual decision based on the result from each k is made. On the other hand,
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a well-known technique to automatically choose the value of k is based on information
criterion such as AIC (Akaike Information Criterion) and BIC (Bayesian Information Cri-
terion), which are popular for evaluating model-based clustering [25]. These information
criteria measure the information loss corresponding to the model being used. The model
with the smallest information criterion (AIC or BIC) is often selected. Previous researchers
inclined to favour BIC for model-based clustering, based on their theoretical and empirical
studies [18, 44, 73]. The performance of both AIC and BIC will be compared later on.

3.2.6 Bringing it all together

Figure 3.2 illustrates the complete proposed clustering scheme. Given a fingerprinting
database mapping the WiFi RSS to the Cartesian co-ordinate, MoG is used to find k clusters
based on the WiFi RSS only. Next, MoG is applied again for individual cluster with the
Cartesian co-ordinate as the clustering criteria. By the end of the first two steps, a big prob-
ability model for the entire fingerprinting database, and a smaller probability model for each
cluster are obtained. When a user submits his signal data to discover his current location,
the system uses the probability model of the entire fingerprinting database to identify the
clusters that the user’s signal may belong to. Then, it uses the probability model of each
of these clusters to highlight the sub-clusters that best fit the user’s signal data. Finally, the
individual WiFi RSS members inside the chosen clusters are compared directly to the user

data to estimate his position.
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Fig. 3.2 The progress of the proposed clustering scheme.
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3.2.7 Related work

In [21, 55], the authors used Affinity Propagation to divide the fingerprinting database based
solely on the WiFi RSS, and only when the matching cluster has been identified, the Carte-
sian labels are used to output the user’s location at the end. Similarly, [2, 58, 83, 92] used
KM and fuzzy logic to cluster the fingerprinting database with the WiFi RSS only. The
proposed approach in this chapter combines the Cartesian label and the WiFi RSS of each
training examples to tackle the signal multipath problem. In addition, while other works use
only a single best cluster to represent the user’s signal data, this chapter selects a group of

clusters instead, to minimise the chance of picking up the wrong cluster.

3.3 Evaluation of performance

This section evaluates the performance of the proposed method, using the three test beds

described in Chapter 2. In doing so, it aims to verify the following research questions.

(i) Can clustering improve the positioning accuracy? Ideally, the main target is to
maintain the same positioning accuracy with or without clustering involved in. How-
ever, by pinpointing the most relevant clusters, the training examples which are further

away may be avoided, and the final prediction result may be improved.

(ii)) How much computational overhead the system can reduce? There are two com-
putationally heavy processes for fingerprinting clustering. The first one is generating
clusters from the off-line training data, and the second one is finding the correct clus-

ters for on-line positioning. Both processes will be assessed here.

The proposed clustering scheme will be compared against KM and FCM. KM is a well-
known hard clustering algorithm which partitions data into distinct clusters [32, 59]. It
will be interesting to observe how the performance of the overlapped clusters compares to
that of the non-overlapped clusters under the same training sets. More details about KM
can be found in Appendix A. On the other hand, FCM is a popular clustering algorithm to
produce overlapped clusters, which is one of the features of the proposed algorithm in this
chapter [8, 23]. Thus, it is natural to choose FCM as a competitor. More details of FCM
can be found in Appendix B. The implementations of KM? and FCM? are provided by
Matlab. All three algorithms used 200 iterations for a single cycle, and /00 random cycles

Zhttp://www.mathworks.com/help/stats/kmeans.html - last accessed in Sep/2016.
3http://www.mathworks.com/help/fuzzy/fcm.html - last accessed in Sep/2016.
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with different initial values (different initial centroids) were repeated to warrant data point
convergence.
Since the system’s design is modular, each individual step will be evaluated separately,

and the final result of the entire process will be shown at the end.

3.3.1 Generating clusters from the fingerprinting database evaluation

To understand how the clusters look like in the real world, with respect to the soft clustering
and hard clustering techniques, Figure 3.3 visualises the whole fingerprinting database under
different clusters using MoG for soft clustering and KM for hard clustering with the RH
dataset. The training examples are clustered based on the WiFi RSS, and then plotted on a
2-D floor map.

With hard clustering, each cluster is virtually separated, whereas soft clustering allows
a much higher degree of freedom for overlapped clusters. With MoG, since each train-
ing example has a posterior probability corresponding to the likelihood of appearance for
each cluster, the highest probability was used to decide which cluster the training examples
belongs to.

The main challenge at this step is to identify an optimal total number of clusters &, so that
the clustering algorithms can generate the clusters accordingly. As discussed earlier, AIC
and BIC will be used to recommend such number. Figure 3.4 suggests that the lowest value
of BIC is around k& = 17 for the RH test bed, while AIC suggests a much lower k, tested
with all the number of clusters between [1,50] . The allocation and positioning accuracy (to
be evaluated later) proved that BIC was a better indication to select k for the fingerprinting
dataset. This result was similar to other reports that AIC tends to overestimate the number
of clusters when used in the mixture models [3, 13, 78]. The same experiment suggests that
the optimal number of clusters for the Cam test bed is around k£ = 11, while that number
is higher at k = 42 for the UJI test bed (see Figure 3.4). Although AIC and BIC serve as
a convenient means to estimate the number of clusters, many real world applications still
decide such number manually by observing each value of k to find out the most optimal
number for their datasets. Although this is a time-consuming process, it is only needed to
perform just once. For the evaluation purpose, most experiments in this section will examine
all the numbers of clusters between [1,50].

Figure 3.5 demonstrates the size of the individual cluster, the mean and variation of
the whole set of clusters generated by each k = [1,50]. As the total number of clusters k

increases, the box plot of MoG spreads out more, which shows a high degree of variation
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Fig. 3.4 Optimal number of clusters recommended by AIC and BIC for MoG.

amongst the clusters’ size. With MoG, very big clusters were noticed. On the other hand,
KM maintained a relatively steady size for its clusters, with very little variation for all three
test beds.

Importantly, FCM failed to produce the correct number of clusters, for certain high val-
ues of k, such as 38,42,44,45,48,49 and 50 for the RH test bed. In addition, FCM failed with
many k for the UJI test bed, which has a high number of WiFi APs per fingerprint. Thus, the
result of FCM for the UJI dataset was not included for the experiments in this chapter. De-
spite the efforts in attempting different search iterations, FCM did not manage to assign any
member to all required k clusters, resulting in several empty clusters. This result coincides
with recent researches, which also reported that FCM has problems with high dimensional
dataset and high number of clusters [90]. It was explained that the objective function of
FCM has a local minimum that is in the centre of the training set. When the number of
dimension is high, all centroids run into the same middle point of the data [90]. Previous
works in FCM-based fingerprinting did not report this issue, although it was noticed that
their datasets were much sparser and did not have as many WiFi APs as the ones used in
this thesis [83, 100].
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Fig. 3.5 Individual cluster size, mean and variation. The red dots are the outliers, which are
very big and very small clusters.
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3.3.2 Deriving sub-clusters evaluation

After the clusters have been generated in the last step based on the WiFi RSS with MoG,
each cluster should have a similar WiFi RSS observation. This step attempts to split each
cluster into sub-clusters with MoG, this time, based on the Cartesian labels, as explained
earlier in Section 3.2.2. BIC will be used to recommend how many sub-clusters to split, in
the same manner as it is used to recommend the optimal number of cluster in the last step.
Table 3.1 summaries the amount of sub-clusters for the three test beds with this approach.
The next section will evaluate the benefit of these sub-clusters, in terms of the performance

accuracy using real test samples.

Table 3.1 Total recommended number of clusters and sub-clusters for the three test beds
with MoG.

RH | Cam | UJI

Total clusters (excluding sub-clusters) 17 11 42

Total clusters (including sub-clusters) 46 52 | 122

Average sub-clusters per cluster 27 | 47 | 29
Max sub-clusters per cluster 4 6 5
Min sub-clusters per cluster 1 1 1

3.3.3 Selective clusters evaluation

This experiment uses the independent test sets to evaluate how successful the clustering
algorithms allocate the test samples into their correct clusters generated earlier from the
training database. These test sets were collected separately and may contain samples which
were not seen in the training sets, as discussed earlier in Chapter 2. For each test sample,
the true Cartesian co-ordinate was used to judge the decision making of the clustering algo-
rithm. The test sample is declared to be correctly allocated to the cluster X, if the Euclidean
distance between the true label and the label of the centroid of X is minimal. If there exists
another cluster Y whose centroid is closer to the true label, this test sample’s allocation is
marked as incorrect.

This experiment emphasises on two observations. Firstly, how the overlapped clusters
may benefit the new sample’s cluster allocation process, compared to rigid distinct clusters.

Secondly, what is the advantage of having sub-clusters that were split based on the Cartesian
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Fig. 3.6 Number of correct allocations based on the Cartesian label.

labels. The result with FCM for the UJI test bed was not included since it failed to generate
clusters for this particular test bed, as explained earlier in Section 3.3.1. Figure 3.6 gives a
good indication that having overlapped clusters clearly allows more test samples to be put
into their correct clusters. In particular, at k = {17,11,42} for the RH, Cam and UJI test
beds respectively, MoG (without sub-clusters) achieved almost 60%, 45% and 40% correct
allocations. While the results of KM at the same number of clusters were only about 8%,
12% and 5% for the same test beds.

Although the results with overlapped clusters outperformed those with distinct clusters,
the correct allocations still were not particularly high. This was because the clusters were
generated based on the WiFi RSS only, therefore, the members within each cluster may not
be close at all in terms of the Cartesian labels. By continuing to derive each cluster into
sub-clusters, using the Cartesian label as the clustering criterion, the correct allocation was
increased from about 60%, 45% and 40% to about 80%, 83% and 67% at the same k for
the RH, Cam and UJI test beds respectively. For all three test beds, the highest observed
probability for a single cluster was above 90% on average, which showed that the majority
of the test samples were confident that they were in their correct clusters. The value 6 = 0.99

was set to allow more than one cluster to be considered with MoG.
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Overall, with MoG, just about 20% of wrong allocations were found for the majority of
k, while KM and FCM struggled from k = 10 onwards for all three test beds. The next sec-

tion will discuss how these wrongly allocated test samples impact the positioning accuracy.

3.3.4 Positioning error evaluation

When the user submits his new signal data for the system to estimate his position, it is
interesting to know how accurate the proposed clustering solution is. Under the same fin-
gerprinting database, each clustering algorithm produces a different set of clusters. Each
algorithm also has its own means to recommend the clusters for a new test sample. To eval-
uate the performance of each clustering algorithm, after the algorithm has recommended the
clusters for the test sample, these clusters will be treated as a new smaller training database.
Then, W-KNN will be used to estimate the Cartesian label for each test sample. This esti-
mated label is compared to the true label of the test sample to work out the positioning error.
All the values of neighbours from [1,50] for W-KNN will be tested, and the final results are
averaged. The performance of the three test beds will be compared under the Cumulative
Distribution Function (CDF) to highlight the benefit of using sub-clusters, the accuracy en-
hancement (if any) with clustering, and the overall positioning accuracy of MoG, KM and
FCM.

Atk =17,11 and 42 clusters for the RH, Cam and UJI test bed respectively (the optimal
k for each test bed), the positioning precision was improved from about 3.5 metres, 70%
probability when no clustering was involved, to about 3.5 metres, 90% probability, with
MoG for the RH test bed (see Figure 3.7). With the Cam test bed, the precision was im-
proved from about 2.5 metres, 70% probability without clustering, to about 2.5 metres, 85%
probability, with MoG. With the UJI test bed, the precision was improved from /0 metres,
85% probability without clustering, to /0 metres, 95% probability, with MoG. This results
confirmed that, by pinpointing the most relevant clusters, it was possible to avoid further
away training examples and improved the performance accuracy. Compared to KM, MoG
and FCM produced better estimation, which confirmed the benefit of having overlapped

clusters for fingerprinting.

3.3.5 Processing speed evaluation

The preparation time, from which the clusters are generated, is undoubtedly the most time-
consuming process. The larger the fingerprinting database is, the longer it takes to generate

clusters. This experiment measures the total time needed to generate the clusters for the
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Fig. 3.7 Positioning accuracy of clustering with the three test beds.

training database of each test bed, using the Matlab clustering package, running on a Core
17 3.5 GHz CPU. Figure 3.8 points out that KM was the fastest option amongst the three
algorithms to generate clusters, whereas MoG needed a much longer time. All three algo-
rithms used 200 iterations for a single cycle, and /00 random cycles with different initial
values (different initial centroids) were repeated for each number of cluster to warrant data
point convergence. The total processing time for MoG also included the sub-clusters gener-
ation time.

However, when it comes to identifying which clusters the new WiFi RSS sample belongs
to, MoG performed as quick as KM (see Figure 3.9). This is expected, because only the new
WiFi RSS data is needed as an input for the Gaussian equation, along with the mean vector
U and the covariance matrix ¥ found in the model, to calculate the probability of this new
signal data for each of the k clusters (see Equation 3.4). This is an advantage of MoG,
considering that its prediction accuracy was better than that of KM and FCM as evaluated
previously. A similar result in terms of the new sample’s allocation speed was observed for
all three test beds.

Without clustering, every single training example must be searched through at least once

for each test sample. With the proposed clustering approach, the system only needs to look
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Fig. 3.8 Cluster generation time from the fingerprinting training database.
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Fig. 3.9 Average time to identify cluster for the new sample.
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through all clusters and their sub-clusters once to decide the most relevant candidates. Then,
it needs to go through every member inside these chosen clusters to calculate the Cartesian
position for the test sample. The smaller the number of clusters, the quicker the first process
will finish, yet, the size of the individual clusters will be large. Hence, the second process
will run slower. In contrast, the bigger the number of clusters, the faster the second process
will finish. Figure 3.10 demonstrates the average reduction in the computational overhead
for all three test beds, using the optimal number of clusters suggested by BIC as previously
discussed in Sections 3.3.1 and 3.3.2. With clustering, the system saves up to 90% in terms
of the training examples needed to go through for the RH and Cam test beds, and up to 95%
for the UJI test bed.
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Fig. 3.10 Computational overhead reduction via clustering.

3.4 Summary and further work

This chapter has proposed and demonstrated a novel idea to organise the fingerprinting train-
ing database for faster searching, which will be useful for the later on-line positioning phase.
The proposed approach addresses the problem of the user standing at the borderline of two
clusters, where his signal data may belong to either cluster. Furthermore, the chapter re-
alised the key difference between fingerprinting and other un-supervised learning problems,
that is, the Cartesian label of the signal data is known in advance. This key information was
mostly ignored in the previous works, where the fingerprinting data was clustered based
solely on the WiFi RSS. By exploiting this information, the chapter described a two-level
clustering process, where each cluster is further divided into sub-clusters based on their

Cartesian label. Finally, in contrary to the convention of choosing a single best cluster for
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the new signal data, the proposed approach made use of the probability information of each
cluster offered by mixture of Gaussians to select a group of clusters.

The proposed clustering scheme was tested under three test beds. The empirical results
concluded that the approach effectively reduced the positioning time. More importantly, the
proposed clustering method with MoG allowed the clusters to overlap which outperformed
hard clustering methods such as KM. In addition, it maintained a lower positioning error
than non-clustering algorithms, thanks to the attempt in pinpointing the most relevant areas
of interest (clusters).

The method of selecting the number of clusters and sub-clusters in this chapter was
based on AIC and BIC. Some potential further work is to investigate how to determine an
optimal number of clusters, based on the size of the clusters. Some possible considerations

for further investigation are outlined below.

(i) The total number of clusters k should be small, in proportional to the size of the finger-
printing database. Since MoG already allows the clusters to overlap, a high number of

clusters may not benefit from having sub-clusters.

(i1) The size of the cluster should be large. If a cluster is too small, it may not be beneficial
to split it much further.

In summary, this chapter has demonstrated a novel method to organise the fingerprinting
training database, so that the training examples can be accessed faster and easier in later
inquiries. The next chapter will demonstrate how to use this training database to estimate

the user position.






Chapter 4

Estimating the user position with

confidence machine

“The enemy of human progress is absolute certainty.”
— Brian Cox, The values of science (2016).

Machine learning algorithms have been playing an increasingly important role for fingerprint-
based systems to estimate the user position. There is a plethora of machine learning options
that are all capable of using the training database to make predictions. However, most of
them make no assumption about the quality of the predicted position. In reality, given the
noisy nature of the indoor environment reflecting in the training data, it will be useful to
provide some information about the uncertainty of the positioning estimation.

This chapter proposes a novel supervised confidence learning algorithm based on Con-
formal Prediction, that is, to the best of the author’s knowledge, the first approach to provide
a confidence measure for the fingerprinting research. This confidence measure does not only
reflect the uncertainty of the positioning prediction, but is also capable of adjusting the size
of the prediction set. The chapter will discuss two implementations of this confidence ma-
chine approach under classification and regression. Their performances are directly com-
pared to the traditional W-KNN and Naive Bayes to demonstrate the improvement in the

positioning accuracy.
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4.1 Introduction to confidence machine

The concept of confidence machine is that a prediction made by any learning algorithm
should be governed by a confidence parameter measuring the belief of the algorithm on
this prediction. The confidence learning algorithm that is used in this chapter is called
Conformal Prediction (CP), which produces a set of predictions, given a new sample, a
training database and a confidence level [75, 85]. For instance, given a 95% confidence
level, a training database with 3 training examples {f1,#,,#3} and a new sample s, the set of
predictions that CP produces is {f1,#,}, which can be interpreted as "I am 95% confident
that ‘s’ belongs to this prediction set. However, there is 5% chance that I may be wrong".
It has been mathematically proven that in the on-line setting, where many predictions are
performed one after another with the new samples added into the training data after each
prediction, CP is correct in the sense of maintaining such error rate. Even with off-line
learning using the same training database to make predictions, the confidence level offered
by CP can adjust the size of the prediction set. For instance, using the same above example,
given a 100% confidence level and a new sample s, CP produces a prediction set {t1,,,3},
which is actually the whole training data. This is interpreted as "I am 100% confident
that ‘s’ must belong to this prediction set, and there is no chance that I can be wrong". This
prediction set is not too useful, however, although it is statistically correct. As the confidence
level decreases, CP automatically reduces the size of the prediction sets accordingly. Ideally,
it is preferred to have a high confidence level with a small prediction set, which may be
achieved with different nonconformity measures. More details of how this process works
will be discussed in the next section. Overall, the use of confidence machine offers the

following benefits.

(i) Each prediction has an associated confidence level to express how likely the prediction

is correct.
(i) The predictions produced by CP are statistically correct under the on-line setting.
(ii1)) The confidence level can be adjusted to produce a bigger or a smaller prediction set.

CP has been successfully tested in some real-world applications such as cancer diagno-
sis, image analysis and network traffic prediction [6, 19, 50, 51]. This is the first time that
CP is used for the indoor positioning research. Empirical studies at the end of this chapter
will demonstrate that the proposed algorithms with CP perform up to 20% more accurate

than other systems without confidence machine.
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4.2 Fingerprinting positioning estimation with Conformal

Prediction

Conformal Prediction is a machine learning algorithm which makes predictions based on
how well the new sample can fit into the training data. To do so, it uses a function called
the nonconformity function to measure the difference between the new sample and other
training examples. The smaller the value of this function is, the higher the probability that
the new sample will fit in. Ideally, when predicting the label for a new sample, it is preferred
that this sample is similar to all training examples. So that, the training sequence’s random-
ness can be maintained. The motivational idea of CP came from Kolmogorov’s algorithmic
notion of randomness for computable approximations [75, 85]. The only assumption which
CP requires is that the training examples are exchangeable, that is, the order they appear
does not have an impact on the prediction. With fingerprinting, this is not a problem since
the training positions were surveyed independently. CP is flexible, in the sense that it allows
any nonconformity function to be used. However, the efficiency of the predictions will de-
pend on such function. In this chapter, two nonconformity functions will be presented, one
for classification and the other one for regression, because fingerprinting may be considered
as either a classification or a regression problem. Their efficiencies will be evaluated later

on.

4.2.1 Classification conformal prediction for fingerprinting

Without loss of generality, the CP classification fingerprinting is formally modelled as

follows. Given the training database T = (Ty,...,Ty) where each training example 7; =
(RSS;, L;) maps the WiFi RSS vector RSS; to its Cartesian co-ordinate L; = (dy,dy) (1<

i <M), anew sample Ty = (m ,L—M—J: ) at an unknown location Ly 1, with known
Im , and a confidence level (1 — &), with & is the significance level, CP will find a set
of training examples for the new sample 7y, in the following three steps.

Firstly, the new sample Ty, is added into the training database, with the label m
being assumed as one of the training labels E) (1 <i<M). Then, given a nonconformity
function A(T,7;) (which will be discussed soon, for now such function is assumed to ex-
ist), the nonconformity measure o = A({T1,....T;—1, Ti+1, -, Tys1 }, 1), (1 <i <M+ 1) is
calculated for every training example. This « score demonstrates the difference between
the example 7; and all other training examples including the new sample. Intuitively, the

algorithm wants to observe how well the new sample with the assumed label fits into the
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whole training database. However, for this reason, since this nonconformity function may
be designed in any way the readers want, the score ;41 of the new sample, by itself does
not tell how similar A finds 7y to be. For that purpose, o+ needs to be compared to
other ;.

Thus, the second step uses the o; (1 < i < M) of all training examples to calculate a
p-value which represents the adaptability of the assumed label L for the new sample, as
follows [75, 85].

:#|{j: L,....M+1:05(L) > apy41(L)}
M+1 '

p(L) (4.1)

1
M+1

are similar to the new sample. The higher the p-value is, the better it indicates that the

This p-value lies within and 1 to indicate the fraction of the training examples that
assumed Cartesian label L helps the new sample 7)1 fit into the training data. Otherwise,
the lower the p-value is, which means ;.1 is much bigger than the majority of other ¢;, the
stronger the indication is that the assumed label L makes this new sample an outlier. This

process is repeated for the remaining training labels to calculate a p-value for each label.

In the third and final step, the algorithm outputs the predictions based on the user’s
requirement. If the user wants a single prediction, the label with the biggest p-value is
chosen as the predicted label. If the user prefers a prediction set, the algorithm will ask for
a confidence level (1 — &) from 0% to 100%, where & is called the significance level. Then,

any training label with a p-value greater than £ will be included in the prediction set Ie.
T5(Ti,..., Ty1) = {LIp(L) > £} . 4.2)

The last objective of this section is to define the nonconformity function A(T, T;) to cal-
culate the difference between a training example 7; and all other training examples, as men-
tioned above. It is worth reminding that CP produces valid predictions with any nonconfor-
mity function, although the prediction’s efficiency may vary. The guidelines in [75, 85] rec-
ommend that the nonconformity function should involve both the label and the object. For
CP classification, the function should compute the difference between the nearest training
example with the same label and the nearest training example with a different label [75, 85].
However, with fingerprinting, the nearest training example may not necessarily be the opti-
mal one due to the noisiness of the WiFi RSS and the signal multi-path problem as explained
in Chapter 2. Therefore, this chapter employs W-KNN to consider a set of K training ex-

amples, where different values of K will be evaluated later on. In principle, the idea is to
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group these K training examples into one weighted averaged position, and follows the same
guidelines as described above. The details of such nonconformity function will be explained
below. The concept of W-KNN has been described earlier in Section 2.5.1.

The first step in calculating the nonconformity function A(T', T;) for the training example
T; is to find K other training examples {77, ...,Tx } which have the smallest Euclidean dis-
tance in terms of the WiFi RSS to 7;. These examples must also have a different Cartesian
label from 7;. In the second step, these K training examples are combined into one weighted

average position ¢ = (dy,dy) as follows, € is a small constant to avoid division by zero.

K
1 —
L Dist(RSS;,RSS;) + Lj
i—1 ,
7 =1 J . (4.3)

i 1

=1 Dist(RSS;,RSS;) + ¢

The nonconformity measure ¢; is the difference between the Cartesian label L; of 7; and

the above weighted position 7.

— . .
0 = ||Li = || = /(i — )2 + (] — dg)? . (4.4)

The implementation of CP classification is summarised in Algorithm 1.

4.2.2 Regression conformal prediction fingerprinting

The challenge of implementing CP for regression is that it needs to examine every possible
training label, which is not feasible for infinite real number labels. With ridge regression,
however, there is a way to avoid having to examine the infinite number of labels, as previ-
ously discussed in [75, 85]. The idea of ridge regression is that one needs to find the weight

value w for the following general regression model so that
Al|wl||* + Z —w-x;)? = min . 4.5)

where A > 0 is the ridge factor constant, y; is the label and x; is the object of the training
example " (1 <i < M). To predict the label for the new sample Xy, ridge regression
calculates w - x,,,. More details about ridge regression was previously discussed in Section
244

Normally, the ridge regression procedure is presented in a matrix form. With fingerprint-
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Data: Training database B = {T7,..., Ty}, significance level &, new sample Tj;. |
with known RSS
Result: Prediction region R

/* Calculate the Euclidean distance of two RSS vectors */
Function Dist(P, Q)

distance = 0;

/* N is the total number of APs */
fori=1—Ndo

‘ distance = distance + (APl.P _AF’iQ)2;

end

return \/distance;
/* Calculate the weighted average position */
/* Kset contains K nearest neighbours to z */

Function Weighted_location (Kset, z)

fori=1—Kdo
weight1 = 1/(Dist(Kset.RSS;,z.RSS) + €) * Kset.L;;
weight2 = 1/(Dist(Kset.RSS;,z.RSS) + €);

end

return weight 1 /weight2;

Function Conform(B, z)
/* Find K nearest neighbours to z, with different labels */
Kset = {};
fori=1—Mdo

if (T;.L # z.L) and min(Dist(T;.RSS,z.RSS)) then

| Kset = Kset +{T;};

end
end
e = Weighted_location(Kset,z);

return / (z.L —e)?;

/* Y is the set of training positions */
forycY do
Ty+1 = (RSSm+1,y);
B =B+{Tyu1}:
for 7, in B do
| aj=Conform(B,T))

end
#{j=1,..M+1:0;>
p(y) — {_] M+1aj aM+|}
end
Prediction set R = {y: p(y) > &};
return R;

Algorithm 1: Fingerprinting Conformal Prediction with W-KNN.
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ing, the training positioning labels are organised as a column vector Yy; = (Ly,...,Ly)’, and
the training WiFi RSS vectors are organised as a M by P matrix, where P is the total number
of WiFi APs observed in the training data, X3y = (RSS1,...,RSSy)’. By substituting these

matrices into Equation 4.5, the equation becomes:
7LHWHZ+HYM—XMWH2 — min . (4.6)
which is equivalent to
Yi Yo — 2w X3, Yor +w (X Xn + Alp)w — min . 4.7)
with I, is the identity matrix. By taking the derivative in w, the equation becomes:
2(XpXm + Alp)w —2X3, Yy =0 . (4.8)

which is equivalent to
w= Xy Xps +Alp) 1 X1 Yy (4.9)

For CP ridge regression, the nonconformity measure ¢; of training example i can be
defined as the difference between L; and L;, where L; is the prediction of ridge regression
— — — —
for RSS; using the whole training data (RSS1,L1), ..., (RSSy,Lay).

o =|Li—Li| . (4.10)
The prediction Y; for X; are
Xyt (X3 Xpr +Adp) 1 X0, Yy (4.11)
which is called a hat matrix Hy;. The vector of the nonconformity measure (ay,...,0n7)"
can be re-written as follows [75, 85].
|Ysr — HuYym| = |(Iy — Hy) Yy - (4.12)

According to [75, 85], given the confidence level (1 — &), with y is a potential label for
Xp+1 (the new sample), and Y = (yq,...,yum,y)’, the vector of the nonconformity measure

can be presented as |A + By|, where

A= (Iy—Hu)1,---,ym,0)" . (4.13)
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B=(Iy —Hu)(0,...,0,1) . (4.14)

Thus, the nonconformity measure ¢; of each training example can be expressed as a
piecewise-linear function of y [75, 85]. It was proven that the p-value p(y) can only change
at points in which o;(y) — ayr+1(y) changes sign (1 <i < M+ 1). This means there is
no need to compute the p-value of every possible training label, instead one only needs to
compute the set of points on the real line that have a p-value greater than the significance
level £. The following CP ridge regression was adapted from [75, 85] for the fingerprinting
problem (see Algorithm 2).

The benefit of CP regression is that it produces a prediction region that may lie in be-
tween the training examples, whereas, CP classification picks a prediction set that contains
the precise training examples. For each dimensional label, CP regression produces a pre-
diction range (i.e. an interval). With a 2-dimensional tracking space, the prediction region
is therefore a rectangle. If the application requires a single prediction, the simplest posi-
tioning output can be the centre of this rectangle. A slightly more computationally heavier
approach is to search through all the training examples to find which ones are inside this
rectangle prediction region, and takes the weighted average of these examples to obtain the
final prediction (see Algorithm 3). The next section compares the performance accuracy of

the algorithms described so far.

4.3 Evaluation of performance

This section compares the performance accuracy of the proposed CP classification and re-
gression algorithms to other popular machine learning algorithms for fingerprinting in the
literature such as Naive Bayes and W-KNN. The advantage of using the confidence measure
will be evaluated to assess whether it produces valid predictions, and if there is any improve-
ment on the positioning result. The positioning error between the estimated position and the
true position will be calculated using the Euclidean distance. The implementations of CP

classification and CP regression in R and Java are also available!.

4.3.1 The validity of CP evaluation

The so-called ‘error rate’ of CP is the percentage indicating how often the algorithm does
not produce a prediction set (in the case of classification) or a prediction region (in the case

of regression) that contains the true location. The algorithm is considered valid under a

Uhttp://www.cs.rhul.ac.uk/~wruf265/CP/ - last accessed in Sep/2016.
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Data: Training database B= {T,..., T}, significance level &, new example Ty,
with known RSS, A and B matrices are initialised from Eq. 4.15 and 4.16
Result: Prediction region R

fori=1—Mdo
if B[i] < 0 then
| Ali] = -Ali]; B[i] = -B[il;
end
end
P={};
fori—1—Mdo
if (B[i] # B[M]) then
| P=P+-(A[i] - AIM])/(BIi] - BIM]) + -(A[i] + A[M]D/(B[i] + B[M]);
end
if (B[i] == B[M]) and (A[i] # A[n]) then
| P=P+-(A[i] + A[M])/2 BJi];
end

end

/* sort P in ascending order from 1 to N. */
P[0] = —eo; P[N+1] = oo;
for j=0— Ndo
| N[I=0;M[j]l=0;
end
fori=1— Ndo
for j=0— M do

if (IA[i] + B[i] * P[j]| > |A[N] + B[N] * P[j]l) and (IA[i] + B[i] * P[j+1]I

> |A[N] + B[N] * P[j+1]!) then

| NGI=N[jl+1;

end
end

end

fori=1—Ndo
for j=0—Mdo
if (I1A/i] + B[i] P[j]| > |A[N] + B[N] * P[j]!) then
| M[jl=M[j]+ 1;
end
end
end

PRegion = { };
fork=1—Kdo
| PRegion = (Uj.y(j/n>e (v, yj+1)) U {y; s M[j]/N > &};
end
return PRegion;
Algorithm 2: Fingerprinting Conformal Prediction with ridge regression [85].
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Data: New sample 7). 1, predicted range produced by Algorithm 2:

Xstart s Xend » Ystart s Yend
Result: Single prediction 7;,

P=1{}
/* go through all training examples */
fori=1—Mdo

/* this training example is inside the predicted region */

if (T[i].L[x] > Xgart) and (T[i].L[x] < Xena) and (T[i].L[y] > Ystars) and
(T[i].L[y] < Yena) then
| P=P+{T[i]};

end

end

/* calculate the single weighted location for all examples in P.
The Weighted_location function was defined in Algorithm 1 %/
T,, = Weighted_location(P,Ty+1);
return 7,,;
Algorithm 3: Computing single prediction with CP ridge regression.

confidence level (1 — &), if the error rate does not exceed &. The formulae to computes
this error rate for a given confidence level is defined below, where N is the total number of
tests, L; is the Cartesian label and R; is the prediction set or region of the test sample "

(I<i<N).
#|i:1,...,N2L,‘¢R,‘|

N

Error_rate =

(4.15)

To study the validity of the predictions, the first experiment performs 10-fold cross val-
idation on each training database of the three test beds. This is the special case of leave-
one-out validation, where each training example is left out and is used as the test sample.
However, due to the high number of training examples in all three datasets, it is preferred to
use 10-fold cross validation. The training examples are randomly divided into /0 roughly
equal portions, for which 9 of them will be used as the training set and the single remaining
portion will be used for testing. In particular, each fold has about 7,360 examples for the
RH test bed, 7,800 examples for the Cam test bed and 7,990 examples for the UJI test bed.
This process is repeated 9 times for the other portions, so that every training example has
a chance to be considered as test sample. The error across all /0 trials will be averaged to
obtain the error rate.

Figures 4.1 demonstrates that both CP classification and CP regression are valid on
all three datasets. The error rates were around the specified confidence level in all cross-

validations (subject to statistical fluctuation). When the significance level is zero, which is
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equivalent to /00% confidence level, there is no error since the predictions are the whole
training set. With a significance level of /, which is equivalent to 0% confidence level, the
error rate is /00% since the prediction set is empty. With CP classification, the test did not go
below 60% confidence level, because many test samples started to return empty prediction
sets at this level. This result also indicates that this is the threshold for the fingerprinting
datasets used in this thesis under CP classification.
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(a) The validity of CP classification. (b) The validity of CP regression.

Fig. 4.1 The validity of CP under three test beds.

This experiment has demonstrated the validity of the predictions provided by CP, under
different significance (or confidence) levels. However, it is more interesting to the finger-
printing researchers that the prediction set (or the prediction region) is small. Thus, the
next experiment evaluates the narrowness of the prediction sets and regions, with respect to
the positioning accuracy and the confidence level. The same training sets from the above
10-fold cross validation were used. For each confidence level, the positioning prediction

accuracy for all test samples were calculated and then averaged.

4.3.2 The performance of CP classification evaluation

For CP classification, there are two parameters to control, which are the K neighbours and
the confidence level. The value of K decides how many training examples to be considered
to calculate an average position. A big K includes the examples that are too far away in
terms of the Euclidean distance. A small K (such as 1-nearest neighbour) may not include
the correct prediction, because the training database is noisy. For CP classification, the value
of K for optimal positioning prediction was empirically shown to be around 60 to 80 for the
RH test bed, 30 to 40 for the Cam test bed, and /0 to 20 for the UJI test bed (see Figure 4.2).

Depending on the chosen confidence level, the value of K slightly varies. For the ease of
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comparison, a fixed K of 70, 35 and 15 were selected for the RH, Cam and UJI test bed

respectively.
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Fig. 4.2 Performance accuracy of CP classification under different nearest neighbours.

Using the optimal values of K found above, the next experiment evaluates the perfor-
mance of CP classification under different confidence levels to understand the size of the
prediction set and the performance accuracy. Since CP classification produces a set of pre-
dictions, there are two methods to obtain a single prediction to compare with the true posi-
tion. The first method is averaging the whole prediction set to a single position. The second
method is simply using the training position with the largest p-value. Their performances
will be evaluated below.

Tables 4.1, 4.2 and 4.3 demonstrate that the size of the prediction set strictly decreases
as the confidence level decreases for all three test beds, as expected. At /00% confidence,
the full training set of all 9 folds was returned. At 60% confidence levels for all three test
beds, several test samples started to return empty prediction sets, which indicated that this
seems to be the threshold. Overall, the recommended confidence levels for CP classification
are 75% for the RH test bed, 80% for the Cam test bed and 65% for the UJI test bed, which

achieve 2.42 metre error, 0.7 metre error and 9.3 metre error respectively by averaging the
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prediction set.

Table 4.1 Performance of CP classification for the RH test bed.

Confidence | Significance | Positioning Predicted Error rate
level 3 error (avg) | positions (avg) (avg)
100% 0 18.2m 62 0%
95% 0.05 6.7 m 46 4.8%
90% 0.1 3.8m 31 10.3%
85% 0.15 244 m 19 11.2%
80% 0.2 2.5m 14 19.6%
75% 0.25 242 m 9 25.3%
70% 0.3 2.58 m 9 29.7%
65% 0.35 251 m 8 34.8%
60% 0.4 2.53m 4 39.6%

Table 4.2 Performance of CP classification for the Cam test bed.

Confidence | Significance | Positioning Predicted Error rate
level & error (avg) | positions (avg) (avg)
100% 0 7.6 m 1,755 0%
95% 0.05 49 m 1,312 4.6%
90% 0.1 1.8 m 1,106 9.2%
85% 0.15 1.2m 879 14.7%
80% 0.2 0.7 m 513 19.8%
75% 0.25 0.75 m 307 24.3%
70% 0.3 0.82 m 156 29.5%
65% 0.35 0.88 m 79 34.8%
60% 0.4 0.83 m 38 39.6%

When the training position with the largest p-value was used as the predicted position,

the positioning error was smaller than that when the whole prediction set was used, for
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Table 4.3 Performance of CP classification for the UJI test bed.

Confidence | Significance | Positioning Predicted Error rate
level E error (avg) | positions (avg) (avg)
100% 0 374 m 837 0%
95% 0.05 223 m 592 5.6%
90% 0.1 16.5m 522 10.8%
85% 0.15 9.8 m 469 15.8%
80% 0.2 10.2 m 317 21.2%
75% 0.25 10.1 m 143 26.7%
70% 0.3 9.7m 82 31.3%
65% 0.35 9.3 m 29 36.4%
60% 0.4 10.6 m 16 41.5%

the confidence levels within 85% and 100%. However, as the confidence level decreases
from 85% downwards, the positioning error got larger with the largest p-value prediction,
for all three test beds (see Figure 4.3). This is because when the confidence level is high,
the prediction set contains many predictions including those that are not close to the true
position. Hence, the overall positioning error when using the whole training set was higher.
However, the prediction with the largest p-value is not always the correct prediction, due to
the noisiness of the training database. Thus, its positioning error slightly suffers when the

size of the prediction set decreases.

4.3.3 The performance of CP regression evaluation

With CP regression, the two parameters to calibrate are the ridge factor A and the confidence
level. Unlike the K neighbours which is an integer parameter, the ridge factor is a real
number, thus, it is more challenging to calibrate. Earlier discussions in Sections 2.4.4 and
4.4.4 pointed out that it is preferred to have a balance A to fit a linear model, and shrink the
co-efficient at the same time. Figure 4.4 uses a step length of 0.1 to test the ridge factors
from 0.01 to 10, which suggested that the optimal ridge factor was around 0./ to / for all
three test beds. A fixed A of 0.7, 0.6 and 0.3 was chosen for the RH, Cam and UJI test bed
respectively.

Using these recommended ridge factors, the next experiment evaluates the performance
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Fig. 4.3 Comparison of the performance accuracy of the single prediction with CP classifi-
cation, under the averaged prediction set and largest p-value prediction.

of CP regression under different confidence levels. Different from CP classification which
predicts a set of individual positions, CP regression produces a region. For fingerprinting
with 2-dimensional Cartesian label, this region is a rectangle, therefore, this experiment
reports the width and the height of the region. Algorithm 3 was used to deduce a single
positioning prediction from the region. The positioning error is the difference between the
true position and this single prediction. Tables 4.4, 4.5 and 4.6 demonstrate that when the
confidence level decreases, the narrowness of the prediction region increases, as expected.
At 100% confidence level, the prediction region was [—oo +oo] which can be interpreted
as the whole tracking zone. The experiment stopped at 40% confidence level since the
region got too small, and the prediction region of many test samples did not include the true

position.

Overall, the recommended confidence level with CP regression is 60% for the RH test
bed, 65% for the Cam test bed, and 50% for the UJI test bed to achieve the most accurate

positioning prediction under these three test beds.
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Table 4.4 Performance of CP regression for the RH test bed.

Confidence | Significance | Positioning | Width | Height | Error rate
level E error (avg) | (avg) (avg) (avg)
95% 0.05 7.13 m 92m | 13.8m 4.2%
90% 0.1 4.24 m 72m | 11.3m 9.4%
85% 0.15 371 m 63m | 74m 14.1%
80% 0.2 323 m 6.Im | 69m 18.4%
75% 0.25 2.72m 58m | 6.6m 24.5%
70% 0.3 2.67m 52m | 6.2m 28.7%
65% 0.35 2.66 m 47m | 5.6 m 33.6%
60% 0.4 2.65m 46m | 53m 38.2%
55% 0.45 2.67m 39m | 48m 43.1%
50% 0.5 271 m 32m | 42m 51.2%
45% 0.55 2.68 m 26m | 3.7m 56.8%
40% 0.6 2.69 m 19m | 34m 62.4%
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Table 4.5 Performance of CP regression for the Cam test bed.

Confidence | Significance | Positioning | Width | Height | Error rate
level & error (avg) | (avg) (avg) (avg)
95% 0.05 3.52m 275m | 1.63m 4.7%
90% 0.1 2.63 m 264m | 1.51m 9.7%
85% 0.15 1.19m 238m | 1.47m 14.5%
80% 0.2 1.08 m 224m | 141 m 19.4%
75% 0.25 0.97 m 221m | 1.32m 24%
70% 0.3 0.83 m 217m | 1.26 m 29.3%
65% 0.35 0.63 m 191m | 1.22m 34%
60% 0.4 0.65 m 1.69m | 1.13 m 39.4%
55% 0.45 0.74 m 1.52m | 1Im 45.5%
50% 0.5 0.65 m 141m | 097 m 50.7%
45% 0.55 0.82 m 1.25m | 0.93 m 56.8%
40% 0.6 0.84 m .16 m | 0.88 m 61.7%
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Table 4.6 Performance of CP regression for the UJI test bed.

Confidence | Significance | Positioning | Width | Height | Error rate
level ¢ error (avg) | (avg) (avg) (avg)
95% 0.05 17.82m | 21.6m | 18.3 m 5.1%
90% 0.1 152 m 187m | 174 m 10.7%
85% 0.15 9.2 m 169m | 154 m 15.9%
80% 0.2 9.5m 141m | 124 m 21.8%
75% 0.25 8.78 m 13.4m | 10.7m 26.2%
70% 0.3 8.62 m 126 m | 93 m 31.8%
65% 0.35 9.3 m 103m | 8.8 m 36.7%
60% 0.4 9.38 m 98m | 79m 41.6%
55% 0.45 8.86 m 81m | 7.6 m 46.4%
50% 0.5 8. 71 m 75m | 6.8m 51.8%
45% 0.55 9.28 m 6.6 m | 6.1 m 56.5%
40% 0.6 8.96 m 63m | 5.7m 61.3%
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Fig. 4.4 Performance accuracy of CP regression at different ridge factors.

4.3.4 Opverall prediction accuracy evaluation

To understand how the proposed CP algorithms perform in the real world, they will be
verified with the test sets which have been independently collected and may contain samples
that were not seen in the training sets. This experiment uses the most optimal parameters
found from the cross-validation experiments in the earlier sections. In doing so, it compares
the performance of confidence machine against other well-known traditional approaches in
fingerprinting including Naive Bayes and W-KNN. The test set of the UJI test bed was the
public version collected 3 months after the training set. There is another competition version
that was generated /8 months later, which will be evaluated in the next section.

Figure 4.5 uses the Cumulative Distribution Function (CDF) to demonstrate the supe-
riority of the proposed confidence learning algorithms, which outperform the traditional
fingerprinting algorithms by /5% to 20% on average in all three independent test sets. In
particular, compared to W-KNN, CP reduced the positioning error from 4.2 metre error to
under 3.6 metre error, 95% probability, for the RH test set. For the Cam test bed, the po-
sitioning error was reduced from 3.2 metres to 2.2 metres, 95% probability. For the UJI

test bed, the improvement was more significant, from /7 metres to under 7 metres, 95%
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Fig. 4.5 Performance accuracy of confidence machine learning.

probability. It was noted that CP classification performed slightly better than CP regression
in the RH and Cam test sets. However, CP regression edged out in the UJI competition test
set, due to its sparser training set. W-KNN performed better than Naive Bayes in all three

test sets, which suffered heavily with so few measures per location in the UJI training set.

4.3.5 UJI’s floors and buildings hit rate evaluation

Out of the three test beds, the UJI test bed has multiple floors and buildings. Although
the proposed algorithms in this chapter were designed with 2-dimensional space in mind,
it would be interesting to assess how well they identify the user position in 3-D. Since
CP classification returns a set of predictions containing the precise training positions, a
simple majority will decide which floor and building for the whole prediction set. With CP
regression, a prediction interval of the floor is first obtained, and the centre of this interval
will indicate which floor the user is on. Then, the prediction region of the longitude and
latitude in a rectangle shape is obtained. Finally, a majority of all training positions within
this estimated rectangle will decide the building of the user. It is possible to use a regression

model to directly estimate the interval of the building. However, this is un-necessary because
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Table 4.7 Building and floor’s successful hit rate for the UJI public test set.

Building hit rate | Floor hit rate

CP classification 99.4% 78.2%

CP regression 99.6% 81.5%

knowing the longitude and latitude will also reveal the building number.

Out of 7,111 test samples, Table 4.7 demonstrates a very high 99.6% successful hit rate
for the building prediction, and a bit lower 81.5% hit rate for the floor prediction with CP
regression. Out of 18.5% test samples that were estimated on the wrong floors, most of

them were only / floor below or above the correct one (see Figure 4.6).
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Fig. 4.6 Performance of CP regression with the UJI public test set.

4.3.6 EvAAL competition test set evaluation

With the UJI test bed, the training set is un-changed. However, there are two versions of the
test set. The first one is publicly available to anyone to self-evaluate their systems, which
has been used in the previous sections. The second one is un-labelled so that it can be used
for the EVAAL 2015 competition. This test set may be obtained by contacting the test bed’s
author directly. Its performance is presented here.

In the EvAAL competition, each entrant was allowed 5 submissions, and the most accu-
rate one was chosen as the final result. The author decided to enter 3 CP regression entries
and 2 CP classification entries with K = {10,15} and A = {0.3,0.5,0.7} which are around
the optimal parameters suggested by the earlier experiments. CP regression was given more
entries because the above experiments with the UJI public test set suggested that it per-
formed a bit better than CP classification. It is worth noting that although the proposed
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algorithms were not officially entered in the competition, the submissions were evaluated
using the same criteria as with other competitors. In particular, the positioning error was
calculated as follows, where R is the true positioning label, and E is the estimated position-
ing label. For every wrongly predicted building, a 50 metre penalty is added into the result,

and for every wrongly predicted floor, a 4 metre penalty is added.
Error(R,E) = Euclidean_Distance(R,E) + (50 x building fail ) + (4 x floorfail) (4.16)

The final results put CP regression as 2"¢ with 9./ metre error, 75% probability, and
CP classification as 3" with 10.4 metre error, 75% probability, out of the 5 competitors
(see Figure 4.7). The detailed performance of CP classification and CP regression under the

competition test set is also available?.
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Fig. 4.7 Performance of CP regression with the EVAAL competition test set.

The information of other competitors can be found on the competition website?. It is
worth noting that some of them came from the industry and did not reveal much of their
underlying algorithms. The RTLS system that came first in this competition also used W-
KNN. However, it applies several filtering methods to the training database, and then divides
it into smaller training sets. In other words, it was designed to tackle this dataset specifically.
The proposed CP classification and CP regression in this chapter were tested with the full
complete training database. In addition, the proposed confidence learning approach in this
chapter offers more information (i.e. the confidence level) which was not utilised at all since
the competitors were ranked solely on the positioning error. More importantly, the proposed
algorithms can produce a prediction set or a prediction region, which was forced to reduce

into a single prediction for evaluation.

Zhttp://www.cs.rhul.ac.uk/~wruf265/CP/ - last accessed in Sep/2016.
3http://evaal.aaloa.org/2015/competition-home - last accessed in Sep/2016.
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4.3.7 Summary of the experimental results

This section summarises the results obtained from the previous experiments to deduce what
lessons to learn from, in order to apply the proposed ideas into the real world.

The positioning predictions from CP have been demonstrated to be valid under different
confidence levels. They constantly outperformed traditional Naive Bayes and W-KNN by
15% to 20% more accurate on average, under the same training and test domains. By com-
paring the performance of CP classification and CP regression under the same confidence
level, with optimal K nearest neighbours and ridge factor A, the experiments suggested that
CP regression achieved a noticeably smaller positioning error for the UJI test bed where the
training space is huge and the training locations are sparser than the other two test beds. CP
classification achieved a slightly lower positioning error with the RH and Cam test beds,
where the training locations are denser.

It was understood that the values of the K parameter, the ridge factor and the confidence
level did impact the quality of the final prediction. It is challenging to find the optimal
values that work for all new test samples, which are not known in advance in the real world.
A possible approach to estimate the optimal value for these parameters is to perform cross-

validation with the training database under different parameters, as seen in this chapter.

4.4 Summary and further work

This chapter has proposed a novel confidence learning approach for the fingerprinting prob-
lem using Conformal Prediction. Two confidence-based algorithms for classification and
regression have been discussed. Their positioning accuracies have been empirically shown
to be around 2.4 metres, 75% probability under a normal test bed, around 70 cm, 75% prob-
ability under an ideal test bed, and around 8.8 metres, 75% probability under a challenging
test bed. These results outperformed non-confidence machine learning algorithms tested on
the same test beds by up to 20% more accurate. The prediction sets produced by the pro-
posed algorithms have also been demonstrated to be valid. The proposed confidence learn-
ing algorithms were compared to other machine learning algorithms in the EVAAL 2015
competition under the same testing criteria. The result ranked the two proposed algorithms
as 2" and 3¢ out of the 5 competitors.

Some potential further work is to examine other nonconformity measures for CP clas-
sification and CP regression. Since CP regression estimates each label separately, it is de-

sirable to find new nonconformity measures that combine multiple labels together in one
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single prediction.
In summary, this chapter has demonstrated how to estimate the user position using the
fingerprinting database. The next chapter will present a novel method to predict the user’s

walking route and the potential destination in advance.



Chapter 5

Dynamic route prediction with the

magnetic field data

“If you have to forecast, forecast often.”

— Edgar Fiedler, The three Rs of economic forecasting (1977).

Most existing fingerprint-based systems were designed as an on demand service to guide
the user to his wanted destination. This chapter introduces a novel feature that allows the
positioning system to predict in advance which walking route the user may use, and the
potential destination. To achieve this goal, a new so-called routine database will be used
to maintain the magnetic field strength in the form of the training sequences to represent
the walking trajectories. The benefit of the system is that it does not adhere to a certain
predicted trajectory. Instead, the system dynamically adjusts the prediction as more data are
exposed through-out the user’s journey.

The proposed system was tested in a real indoor environment to demonstrate that the
system did not only successfully estimate the route and the destination, but also improved

the single positioning prediction.
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5.1 Passive monitoring for the regular users

The previous chapter demonstrates fingerprinting in an active tracking context, where the
user submits a new WiFi RSS sample for the system to discover his current position. This
chapter considers fingerprinting in a passive tracking scenario, where the system has the
permission to monitor the user positions continuously to react in a timely manner when his
position changes (i.e. to open the door, to switch off the light). Crucially, with passive
monitoring, the system is guaranteed to have access to a sequence of the signal data, which
provides useful insights into the walking trajectory. In addition, these users normally have
established presence in the building, hence, their personal routines should have been well-
observed to help the system predict their intended travelling path in advance.

However, the use of the WiFi RSS in this scenario is challenging because of its noisiness
and its high variation. This chapter will investigate the magnetic field data as a new source
of information, which has been suggested in some earlier work in fingerprinting [33, 45,
80]. There is a fundamental difference in the application of the magnetic field data in this
chapter, that is, they are considered as a sequence. The chapter will later explain why
this is a more suitable option than using it in a traditional single position fingerprint. This
chapter will present a novel dataset called the ‘routine database’ to reflect the user’s walking
routine, based on the magnetic field data. The benefit of this approach, and the details of the

implementation will be discussed in the remaining sections of this chapter.

5.2 Extra information from the magnetic field

This section explores the use of the indoor magnetic field for fingerprinting. It only ex-
amines the features that are most relevant to fingerprinting, including the sensitivity and
the uniqueness. More detailed experiments of the indoor magnetic field data can be found
in [45, 54, 93].

5.2.1 How to measure the magnetic field?

An Android phone - one of the most popular devices to perform fingerprinting, was used to
collect the magnetic field for all experiments in this chapter. The geomagnetic field sensor
on the Android phone measures the strength and the direction of the magnetic field at a
point in space, where the phone is held. This measure is presented as a 3-dimensional vector

m = (x,y,z), where x,y,z (measured in microTesla or uT) are the ambient strength of the
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magnetic field in the corresponding axis (see Figure 5.1). The fastest sampling frequency

on the experimented Nexus 5 phone was about 3 samples per second.

Fig. 5.1 The three axes of the geomagnetic field sensor.

It is important to note that these axes are relative to the position of the mobile phone in
space. Therefore, the magnitude of each axis may differ as the device’s orientation changes,
even when it stays in the same spot. The accelerometer included on the phone may be used
to detect the direction of the gravity, which helps to deduct the 3-D position of the phone.
However, since the focus of this chapter is mainly about the magnetic field, this idea is left
out for future work. A simple solution to this problem is to combine the magnetic field

vector into one scalar magnitude as follows (see Equation 5.1).
17| = Vx> +y> +2% (uT) - (5.1)

However, with this approach, there is only measure left for each position. For the rest
of this chapter, this single scalar magnitude will be referred to as the magnetic field strength
(MFS), and the whole magnetic field vector with all three magnitudes of the three axes will
be referred to as the MFV.

5.2.2 The sensitivity of the magnetic field strength

The reliability of fingerprinting depends on the stability of the fingerprints. This is the abil-
ity to repeat the same measure at the same position at any time in the near future. This
requirement is challenging, because the structure of the building may have changed, or be-
cause of other external factors that happened at the time of data measuring (e.g. moving
people or furniture). The former may happen gradually which allows the system to cope
with, although it may require the whole training data to be re-surveyed. The latter is nor-

mally caused by the indoor users’ movements, which may be avoided if the MFS has low
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sensitivity. Two experiments were performed to assess the sensitivity of the MFS in real-

time and over long periods of time.
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Fig. 5.2 Histograms of the WiFi RSS and MFS in fixed positions from the same magnetic
source and AP, over 6 hours during working hours. Stronger MFS were more robust than
weak MFS. Strong WiFi RSS were less robust than weak WiFi RSS.

The first experiment measures the variation of the MFES at a fixed position. It is preferred
that the variation is low to avoid the second challenge posed above. The experiment was
performed over 6 hours during the working hours to reflect a busy environment, with many
people walking in the building. Compared to the WiFi RSS, the MFS vary much less rapidly
in its measurement unit in fixed positions. This experiment also suggested that the stronger
the field strength was (the closer it is to the magnetic source), the more stable the MFS was,
which was exactly the opposite of the WiFi RSS, where strong RSS was more sensitive than
weak one (see Figure 5.2).

The second experiment assesses the repeatability of the MFS at the same positions. For

this experiment, /5 positions in the building were marked with duck-tape. They were re-



5.2 Extra information from the magnetic field 85

—1 week later
<2 weeks later

3 weeks later
5- A B4 weeks later
EX

o
23

e
>N

=
=

Variation (uT)
o
Pearson correlation

o
o

) 40 60 80 100 120 140 160

0 L - .
Magnetic field strength (uT) Day 1-2 Day1-3 Day1-4 Day2-3 Day2-4 Day3-4
(a) MFS change over time. (b) Pair-wise comparison of MFS sequences with

Pearson correlation. The closer it is to 1, the more
similar the two sequences are.

15

T T
—1 week later Ir
2 weeks later,

10"~ -3 weeks later g ]

B4 weeks later, 72 S

5-

=3
oo

o
=N

Variation (dBm)
o

<
=

Pearson correlation

o
to

-100 -90 -80 70 -60 -50 -40 -30 0 ‘ ‘ ‘
WiFi RSS (dBm) Day1-2 Day1-3 Dayl-4 Day23 Day24 Day34

(c) WiFi RSS change over time. (d) Pair-wise comparison of WiFi RSS sequences
with Pearson correlation. The closer it is to 1, the
more similar the two sequences are.

Fig. 5.3 The change of the MFS and WiFi RSS at /5 observation points over / month.
Strong MFS was slightly less sensitive, while strong WiFi RSS was more sensitive. MFS
sequences were highly correlated, while WiFi RSS ones were not.

visited weekly, over / month to measure the MFS. Only 5 measures were taken at each
observation point, and the average was used for this experiment. It was suggested that the
variation was minimal, compared to the WiFi RSS observed at the same locations, with up to
only 3 uT for the positions with strong MFS, and up to 4 uT for other positions with weak
MES (see Figure 5.3). Such difference was well-within the short-term variation range of the
magnetic field reported in the last experiment. Also, there may be a slight displacement of
the phone’s position when the experiment took place, which explains this small change.

In summary, the magnetic field has low sensitivity and is highly repeatable with time,
compared to the highly volatile WiFi RSS. The major difference of the WiFi RSS and MFS is
that strong MFS was observed to be more robust than weak one, whereas, strong WiFi RSS
was more sensitive than weak RSS. This is an important suggestion to apply the magnetic

field to fingerprinting, since most positioning systems would favour the strong signals.
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5.2.3 The uniqueness of the magnetic fingerprints

The positioning accuracy of fingerprinting relies on how unique the surveyed fingerprints
are. If all the training examples are similar, it will be challenging for any algorithm to use
them to estimate the user position. With the magnetic field, the building is made of large
ferrous metal structures (i.e. pipes, steel shells) which greatly distort the magnetic readings
at many indoor positions (see Figure 5.5). However, their influence is mostly local, and the

greater the anomalies, the more unique the magnetic fingerprint is.

The major challenge when using the magnetic data for fingerprinting is that it only con-
tributes a maximum of three measurements corresponding to the magnitude of the three
axes for each fingerprint, whereas, the WiFi signal provides a big vector of many RSS read-
ings from several nearby WiFi APs. A single walk through the ground floor of the RH test
bed exposed several different positions with a similar MFV, in which the difference in the

magnitude of each axis was just 2 uT (see Figure 5.4).
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Fig. 5.4 The magnitude of each of the three axes measured from a single walk through non-
repeated positions on the ground floor of the RH test bed. The black circle pinpoints the
positions with a similar reading.

For this reason, the magnetic field alone should not be employed to represent a single po-
sition, as in the case with the WiFi RSS. To take advantage of the robust magnetic measure,
however, this chapter proposes to merge them into a long sequence to represent a walking
trajectory, which is much more distinctive. Intuitively, it is less likely to have two different
trajectories with the same magnetic field representation. These trajectories form the user’s

routine database to be explored in the next section.
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(a) The propagation of WiFi RSS from a single AP in an office. The non-
uniform signal coverage was caused by signal passing through doors and
walls. Positions further down the corridor may still see the AP, although

the signal was relatively weak.
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(b) Magnetic field strength from a central heater attached on the wall in
the same indoor corridor. It provides very fine scale reading over short

distance.

Fig. 5.5 Magnetic field strength is more resilient than WiFi measurement from its transmit-
ting shape. Distance-wise, WiFi coverage is far greater than magnetic field, from a single

power source.
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5.3 The personal routine database

In addition to the fingerprinting database, a routine database is introduced for each user.
This new database describes the user’s travelling history in the form of the frequently vis-
ited places, and the routes amongst them. Since each user normally has different preferred
trajectories, he should have his own routine database. Each training example of the routine
database represents a walking trajectory, whereas each training example in the fingerprint-
ing database represents a single position. The training trajectory is a sequence of continuous
MFV readings, mapped to their Cartesian co-ordinates. It is essential to clarify that the main
purpose of this routine database is not to substitute the fingerprinting counterpart, but to pro-
vide prior knowledge to predict where the user may go next. The fingerprinting database
will still be needed when the user takes a completely new route, which has not been recorded

in the routine database. This routine database was introduced based on three observations.
(i) The indoor user often takes the same route to travel between familiar places.
(i) The user often walks in a straight path.

(iii)) For a moving user, there is often not enough time for the tracking system to collect

multiples readings at every single position in real-time.

This section outlines the process of generating the routine database, and the formal

model of such database.

5.3.1 The off-line phase to generate the routine database

Initially, the routine database is generated manually in the same manner as the fingerprinting
database. The two differences are that the magnetic field is collected instead of the WiFi
RSS, and each training example in the routine database is a sequence of MFV. The expert
first identifies the route he wants to cover. He then uses an Android phone (with the app
described in Chapter 2) to record the magnetic data at different positions along the route,
and provides them with the corresponding Cartesian labels. At each position, the magnetic
data should also be measured several times and an averaged measure is computed, although
the number of repeated measures need not be as high as in the case with the WiFi RSS,
because of the low variation of the magnetic field as previously discussed in Section 5.2.2.
The starting and ending positions of the trajectory are also labelled by the room or office
number, so that the system can provide a human-readable response when needed. The

only criterion the expert should consider at this phase, is how long the gap between the
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two consecutive positions in the trajectory is. Ideally, it is preferred that this gap is small.
The granularity of the fingerprinting database can be used as a reference to decide this gap
(e.g. I metre between consecutive positions). A method to compare two trajectories with
different gaps will be discussed in the next section. The expert will attempt to cover as
many trajectories as possible, which is similar in the sense that he also tries to cover as
many individual training positions for the fingerprinting database as possible.

It may also be useful to incorporate the user’s personal timetable into his routine database,
by looking for the starting and ending positions of the events on the calendar. However, such
approach is beyond the scope of this chapter. For the experiments described here, the routine

database is manually generated by one user to reflect his personal routine.

5.3.2 Modelling the routine database

Without any loss of generality, the routine database RD is formally modelled as a set of
M examples RD = {Ti,...,Ty}. Each training example 7; = (Ry,...,Rg) (1 <i < M)
represents a walking route, where R; (1 < j < K) is the data of the position j'" along the
route, with K is the total number positions on the route. Each position R; = (Z\Wj,l_ﬂ))
contains the magnetic field vector ]\WJ = (x,y,z) recorded at that position, along with its
Cartesian label f]) = (L;{,Lf), with x,y, z is the magnitude (uT') of the three axes.

The task is, given a magnetic sequence without the Cartesian label (MFV},...,MFVy),
the system finds the best training trajectory that matches this sequence.

5.3.3 Estimating the user trajectory with the routine database

The user will have an app running in the background to collect the magnetic data auto-
matically. This is also the common assumption for most passive monitoring systems. The
recording process is triggered when the accelerometer readings are above a certain thresh-
old for a window period of a few seconds which indicates that the user is moving (see
Figure 5.6). This same process will stop when the user no longer moves, for which the ac-
celerometer readings are within the threshold for a window period of time. It is worth noting
that the use of accelerometer in this chapter is basic, although these accelerometer measures
can tell more information about the user movements as in WiFi Simultaneous Localization
and Mapping (SLAM) research [27, 45, 61, 87].

When triggered, the magnetic data is recorded continuously to generate a real-time tra-
jectory. It may be possible that some false recordings will get through when the phone is

momentarily picked up (e.g. to make a call). This issue may be avoided by setting an initial
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Fig. 5.6 Acceleration reading with the phone in the trouser pocket. When the device is static,
the reading is around 9.8m/s?, which is equivalent to the earth’s gravitational force [34].

threshold for the trajectory’s length, so that the prediction module will only engage when
the trajectory has accumulated at least a certain amount of data. This approach is left for
future research.

As the user travels, the system assumes that the training trajectory which closest matches
the current real-time sequence is the correct route. This assumption, in turn, tells the system
what the potential destination that the user may arrive at. However, the system does not
stick to a single predicted trajectory. Through-out the journey, the user’s magnetic sequence
gets larger, and also becomes more unique. Every time a new reading arrives, the system re-
calculates the measure to the training examples to find a better trajectory, if any. Therefore,
the potential destination is dynamically adjusted as the user navigates the building.

To compare the difference of two magnetic sequences, this chapter employs Dynamic
Time Warping (DTW). The benefits of DTW are to mitigate the difference in the measur-
ing time of the training and real-time sequences, the ability to compare signal sequences
of different lengths, and most crucially is to eliminate the temporal variance in walking
speed [63, 66, 79]. The smaller the DTW measure is, the closer the two trajectories are. The
variant of DTW employed in this chapter is called open-end DTW (OE-DTW) [29]. Normal
DTW will stretch the shorter sequence to match the longer one up until the end, for which,
this OE-DTW version relaxes the end-point constraint. It serves the purpose of this chapter
better, because in the early stage of the journey, the user’s MFV sequence is short, and may
introduce certain bias when compared to the full training trajectories, even though they start
from the same position. In principle, OE-DTW achieves its target by constructing different

incomplete versions of the longer sequence, and picks the best match. In order to compare
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the DTW measure at different points of the journey, these measures will be normalised by

dividing with the length of DTW aligned sequence. More details of OE-DTW! can be found

in Appendix C.

Figure 5.7 demonstrates an example of this estimation process in real-time?

prediction algorithm with the routine database is summarised below (see Algorithm 4).
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(c) However, the user turns to a different route
in mid-way. The matching measure dropped

(d) The system switches to the next matching
route (lecture room).

. The route

as he navigates away from the predicted route
(kitchen), which signalled a wrong prediction.

Fig. 5.7 An example of the dynamic route prediction with the routine database. The 3 train-
ing trajectories were Kitchen-bound, Lecture room-bound, and Toilet-bound. The matching
number on the left is calculated by DTW and is scaled to [0,1] for demonstration purpose.

The closer it is to 1, the more similar the predicted route is to the actual taken route.

IFor the rest of the chapter, the term OE-DTW will be simply referred to as DTW, and DTW measure

means normalised OE-DTW measure.
%A video demonstrating this process can be viewed at http://www.cs.rhul.ac.uk/~wruf265/dtw.mp4
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If the DTW measures between the real-time sequence and all training trajectories are
low, in other words, no training trajectory matches the current sequence, the system will
simply make a single position-by-position prediction with the fingerprinting database. This
situation may happen because the user is relatively new to the building, or because his walk-
ing routines have not been well-recorded. A more in-depth discussion of how to estimate
the single user position based on the fingerprinting database was covered in the previous
Chapter 4.

Data: Routine database with M training trajectories {71,...,Ty}.
Result: Route prediction.

while user is still moving do
read Magnetic field strength MFV} at current location &;

/* merge it into a sequence */
mageur = mageyr + (MFVy);

/* Find the closest training trajectory */
min = oo ;
Tref =T,

fori=2—+Mdo
if DTW(T;, mag.,,) < min then
min = DTW(T;, mage);
Ty f= T;;
end
end
return T ¢;

end
Algorithm 4: Estimating the trajectory with the routine database.

5.4 Related work

The earliest use of the magnetic field for indoor positioning was first seen in robotics nav-
igation. It helps the robot orientate itself by maintaining a correlation to the magnetic
North [40, 82]. However, the structure of most buildings greatly distorts the direction of
the magnetic field (e.g. compass does not work reliably indoors).

Some early work suggested the use of the magnetic field with fingerprinting. However,
they shared the same idea that the position’s fingerprint is directly represented by the mag-

netic data [15, 54]. This approach is challenging, as explained earlier, since the magnetic
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field only contributes a maximum of three measures per location. The work described in

this chapter makes use of the robust magnetic data via a sequence of measures.

5.5 Evaluation of performance

The experiments with the routine database in this chapter were performed on the RH test bed
only, because this is the only test bed with the magnetic field data. The R implementation
of OE-DTW? was used to conduct the experiments.

5.5.1 Ciriteria of evaluation for the routine database

Due to the difficulties in recruiting more experts to generate the routine database for many
users, this chapter only has / routine database with 50 training trajectories, covering all
three corridors on the ground floor of the RH test bed, with the starting and ending points in
different offices (see Figure 5.8). The individual training trajectory is included in Appendix
D. In particular, the longest trajectory has 62 MFV measures, and the average length is 34.
The magnetic field data was collected with the phone held in the user’s hand at chest level,

and the impact of the device’s orientation is assumed to be negligible.
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Fig. 5.8 Coverage of all training routes.

The test set contains 23 test trajectories measuring separately at different times from the
training set, for which /0 of them are fully covered in the training set (see Figure 5.9). For
every fully observed test trajectory, there are at least 3 training trajectories that start from

the same position.

3http://cran.r-project.org/web/packages/dtw/ - last accessed in Sep/2016.
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Fig. 5.9 The 10 fully observed test trajectories. The blue circle denotes the starting point.
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The other /0 test trajectories are partly covered so that only the beginning portion of the
route was recorded in the training set. These routes either finished in unknown positions or
the remaining half of their trajectories was not observed (see Figure 5.10).

The remaining 3 test route are completely new trajectories, which were recorded two
floors above the training space in the same building (see Figure 5.11). There is no informa-

tion of these routes in the training database.
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Fig. 5.11 The 3 completely new test trajectories measured on a different floor. The blue
circle denotes the starting point.

Using this routine database, the chapter aims to address the following questions.

(i) How well the routine database predicts the route and the potential destination?
The main purpose of the routine database is to estimate the user’s trajectory and desti-
nation. Therefore, it is natural to assess how well it performs, in terms of how quickly
the system picks the correct trajectory and how often the system switches trajectory

during the journey.

(i) Can the routine database improve the accuracy of the single positioning predic-
tion? If the routine database identifies the correct route the user is taking, can it also
improve the positioning prediction, compared to the result produced by the fingerprint-

ing database?

For the experiments in this chapter, the test trajectory is broken down into ordered indi-
vidual MFV which represents a single position on the trajectory. Each MFV will be accu-
mulated one-by-one into a sequence to simulate a walking user in real-time. At each step,
the system computes the DTW measure of the current sequence to every training trajectory.

The training trajectory with the smallest measure will be chosen as the predicted route.
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5.5.2 The destination and route prediction evaluation

The first experiment evaluates the accuracy of the route and the destination prediction. Two
observations stand out from this experiment. Firstly, in terms of destination prediction, the
accuracy was not particularly high. At all 377 positions on the /0 fully observed test trajec-
tories, the system managed to suggest the correct destination for only /56 positions, which
was less than 50% (see Figure 5.12). This result is understandable, because there are sev-
eral training trajectories that start from the same position for each test trajectory. Thus, the
system was not always able to pick the training trajectory that leads to the correct desti-
nation. Unsurprisingly, none of the remaining /3 partly observed and new test trajectories

suggested the correct destination.
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Fig. 5.12 Destination prediction accuracy with the routine database. Each horizontal line
corresponds to the test trajectory. Each cross demonstrates a position along the journey
where the destination prediction is correct.

However, in terms of route prediction, each position is deemed correctly predicted as
long as the predicted trajectory overlaps with the correct trajectory from the beginning up
until the current position. For example, considering test trajectory 106-125, which goes
from office 106 in the lower-left to office 125 in the top-right (see Figure 5.9b), there are
3 training trajectories that start from the same office with this test trajectory but end in
different positions (see Figure 5.13, the full routine database is listed in Appendix D).

In this experiment, when the user’s sequence was short, the system matched it to the
shortest training route 106-115 (see Figure 5.13a). Although the user’s actual route was

106-125, this taken route overlaps the predicted route 106-115. In other words, the user was
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Fig. 5.13 The 3 training trajectories that start from office 106. The blue circle denotes the
starting point.

actually following the same trajectory up until this point. In terms of positioning prediction,
this predicted route did not make much difference, which will be evaluated in the next
section. When the user’s magnetic sequence grew larger as he went past room 115 - the
destination of the current predicted route, the system re-calculated the DTW measure and
found the correct matching route 106-125. Overall, at all 377 positions on the /0 fully
observed test trajectories, the system managed to suggested the correct trajectory for 286
positions, which was almost 90% (see Figure 5.14). This result also illustrated that all the
wrong route predictions happened at early positions when the sequence was short. For this

routine database, all test positions with at least 9 MFV found their correct routes.
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Fig. 5.14 Route prediction accuracy with the routine database. Each horizontal line corre-
sponds to the test trajectory. Each cross demonstrates a position along the journey where
the route prediction is correct.
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The second experiment evaluates the value of the DTW measure between the test tra-
jectories and the training trajectories. For all 70 fully observed test trajectories, the DTW
measure at each position on the test trajectory was relatively low, with the highest measure
recorded at just /2.6 (uT) (see Figure 5.15a). This low measure is understandable because
there are several training trajectories that match these fully observed test trajectories. For
the /0 partly observed test trajectories, the DTW measures were also low, up until the point
where the user strayed away from all training trajectories, from which the DTW measure
quickly grew up (see Figure 5.15b). For the 3 completely new test trajectories, the DTW
measures went up rapidly right from the very beginning with the biggest measure recorded
at 116.7 (uT), because there was no training trajectories that match these new test trajecto-
ries (see Figure 5.15c). Table 5.1 summaries the DTW measures for the three categories of

the test trajectories.
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Fig. 5.15 The minimum DTW measure at each position on the test trajectory through-out

the journey.

This experiment also exposed how often the system changed trajectory during the jour-

ney, since it always picked the training trajectory with the lowest DTW measure to the
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Table 5.1 Comparison of the normalised DTW measure for the test trajectories.

Max DTW | Min DTW | Average DTW
measure measure measure
Fully observed test trajectories 12.6 3.2 6.8
Partly observed test trajectories 84.7 33 31.2
Completely new test trajectories 116.7 54 84.1

current sequence at each position. Figure 5.16 pointed out that for this routine database,
when the test trajectory had less than /0 MFV, the system switched routes about 5 times on
average across all 23 test trajectories. In contrast, when the length of the test trajectory was
within [10 20] MFYV, the system switched route only 2 times on average. For all /0 fully
observed test trajectories, there were 4 routes being used on average through-out each test
trajectory. Overall, the longer the test trajectory was, the more successful the system could

match it to the correct training trajectory, and the less frequent the system switches routes.

5.5.3 Single positioning estimation evaluation

Although the main purpose of the routine database is to predict the potential walking tra-
jectory and the destination, it is interesting to investigate the positioning accuracy while the
user is travelling on the predicted route. At any stage of the journey, the user’s position
will be regarded as the Cartesian label of the last position on the training trajectory returned
by DTW. It is worth recalling that the OE-DTW variant of DTW employed in this chapter
tests different incomplete versions of the training trajectory by relaxing the end-point con-
straint to find the best matched version. For this experiment, all 3/7 positions on the /0
fully observed test trajectories will be used as test positions. To compare the positioning
estimation with the fingerprinting database, the WiFi RSS vector at each test position was
used to estimate the user position.

Figure 5.17 demonstrates a remarkable positioning accuracy using the routine database
with up to 2.2 metre positioning error, 95% probability with the routine database, compared
to 3.5 metres, 95% probability with the fingerprinting database. This result emphasises that
when the system is certain of the user’s walking trajectory, it can estimate the user’s where-
abouts using the individual positions recorded on the training trajectories much quicker with
higher accuracy. In contrast, the fingerprinting approach must go through the whole training

database to make prediction for every position.
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Fig. 5.16 How often the system switches route, through-out the journey of the whole test
trajectory.
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Fig. 5.17 Performance accuracy of single position estimation with the routine database.

There are two reasons why the estimated position using the routine database may not

perfectly match the true position. Firstly, the training trajectory does not line up completely

with the real-time trajectory. The version of the training trajectory returned by DTW may

be a few measures before or after the real-time trajectory. Secondly, there are many training

trajectories starting in the same position, the current predicted one is not necessarily the

correct one.

5.6 Summary and further work

Traditional fingerprinting has normally been considered as a tracking service to guide the

user to his wanted destination. This chapter addresses fingerprinting as a sentient service for
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the regular users to allow the system to predict their intended walking route and the potential
destination in advance. The chapter has shown that such objective was possible by using
the magnetic field data to generate a routine database for the user. The major difference
of the proposed approach and other fingerprint-based ones is that the real-time readings are
accumulated as a sequence to distinctively represent the user’s walking trajectory. Using
this routine database, the system can predict the user position with higher accuracy than
using just the fingerprinting database. The chapter also demonstrated that the longer the
system observes the magnetic field data, the more accurate the predicted routes are, and the
less frequent the system changes route during the journey.

The limitation of the proposed approach is that it is more feasible for the buildings with
narrow corridors (e.g. those in the RH test bed). It was not designed to identify the user’s
position in a large area (e.g. in the middle of the lecture hall), for which the fingerprinting
database will be more suitable.

Lastly, some practical discussions are outlined here. These discussions were not pre-

sented in the main body to maintain the focus of the chapter.

(i) How does the system cope when the user temporarily turns off his phone, or when
he takes a break during his journey? When the walking route is broken, the system

simply makes a single position-by-position prediction using the fingerprinting dataset.

(ii)) What if the user turns on the tracking app in the middle of his journey? With the
current design, the system predicts the trajectory at the beginning of the user’s journey.
It may be possible to make prediction in mid-way, although this concept has not yet

been examined in this chapter.

(iii) Why not use a universal routine database for every user in a similar manner as
the fingerprinting database? Firstly, the chapter assumes that most users often follow
their own preferred path to navigate the building. Secondly, a universal database may
contain too many trajectories, for which, certain paths may not be used at all by some

users.

This chapter has laid the foundation for using the routine database to predict the walking

trajectory. Some potential further works to improve this concept are outlined below.

(1) The personal routine database can be further personalised by adding the approximate
starting time for each journey. Depending on the user’s timetable, he may favour one
particular route at a certain time, and this extra information may improve the accuracy

of the decision making process. More importantly, the timetable also tells how often
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(i)

(i)

(iv)

the event takes place, which can provide the initial value for the frequency of the
trajectory. For example, the timetable indicates the user has 4 lectures per week, thus,
the F(office, lecture) = 4.

It may also be useful to set a threshold for the user’s real-time trajectory, so that the
prediction engine only engages when the trajectory reaches a certain length. This
approach has two benefits. Firstly, it guarantees that the accumulated user trajectory
is long enough to avoid many initial similar matchings with the training trajectories.
Secondly, it avoids the scenario where the recording process is falsely triggered by the

user temporarily picks up the phone to make a call.

Since the routine database is constantly updated with new WiFi RSS and magnetic
field data, it is also a great resource for crowd-sourcing. The training examples from
the fingerprinting database may be updated with the latest data extracted from the

individual routes in the routine database.

It may be beneficial to reduce the number of times the system has to search through the
routine database by introducing a DTW measure threshold. There are two scenarios
for this threshold.

(a) If the DTW measure between the current training trajectory and the real-time tra-
jectory is below the threshold, the system believes that the user still follows the
predicted route. Hence, it does not bother checking other training trajectories.

(b) If the measure rises above the threshold, the system believes that the predicted
trajectory is no longer correct. It re-calculates the measure to other training trajec-

tories to find a better match.

There are two parameters to consider here. Firstly, a DTW measure threshold needs
to be decided in advance, so that the system knows when to drop the current predicted
trajectory to find a better one. The challenges here are that if this DTW measure
threshold is low, the system keeps following the wrong training trajectory, although
the user has turned to a new route. In contrast, if this DTW threshold is high, the
system becomes too sensitive, and may drop the correct training trajectory because
of the noises recorded in the real-time trajectory. Secondly, a time window parameter
also needs to be considered to tackle the challenge with the magnetic noises. This time
window ascertains that the system does not accidentally drops the correct training
trajectory. Only when several low DTW measures are recorded within this window

that the current training trajectory is dropped.
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All the chapters discussed so far in this thesis assume that the new WiFi RSS sample
from the user is fully observed from his unknown position. However, there are certain
factors including the operation of the WiFi scanning process that may result in incomplete

signal observations. The next chapter will investigate this phenomenon.






Chapter 6

Detecting and handling missing Access

Points in the real-time WiFi scan

“When you realise you’ve made a mistake, take immediate steps to correct it.”
— Dalai Lama X1V.

The reliability of WiFi fingerprinting depends much on the availability of the indoor WiFi
APs. An AP which goes missing during the real-time positioning phase results in an incom-
plete signal strength observation, which does not match any recorded training examples. To
further complicate the problem, the missing AP is not just caused by the human interven-
tion, but also happens due to the nature of the WiFi scanning process. Surprisingly, this
problem is conveniently overlooked in most fingerprinting researches.

This chapter addresses the aforementioned issues in two phases. In the detection phase,
given the user’s real-time WiFi RSS data, the system attempts to spot any potential missing
APs, based on the positioning prediction and the APs’ behaviours from the previous reading.
In the recovery phase, it then estimates the RSS of the missing APs by testing all potential
RSS’s values. The proposed technique has been validated to confirm its success in detection

and recovery of the missing WiFi APs.
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6.1 The WiFi scanning process

There are two methods to perform WiFi scanning on an Android phone, which are active
scanning and passive scanning. Both of them operate at the IEEE 802.11 MAC layer. This
section discusses the mechanism of each method to understand how they affect the missing
AP problem.

With passive scanning, the phone listens on each channel for the beacons sent by the APs
periodically. The IEEE 802.11 standard specifies that the WiFi APs must send out beacons
every 100 ms on all channels simultaneously [38]. The author looked into the Android
source code to find out that the Android phone is implemented to stay on each channel for
120 ms. Theoretically, this extra 20 ms is sufficient for the phone to discover at least one
beacon per channel. With /3 channels of the European 2.4 GHz spectrum, it will take at
least 7,560 ms to scan all nearby APs. In reality, the total scanning time is longer because of
the information processing delay. Although passive scanning consumes less battery power,
the device cannot pick up hidden APs, which are configured not to send out any beacon.

With active scanning, the phone sends the probe request frames on each channel, then
listens for a minimum of MinChannelTime (ms) for the probe responses from the WiFi APs,
before moving on to the next channel. If more than one probe response is heard, the phone
continues to listen till the MaxChannelTime (ms) has elapsed. However, the IEEE 802.11
does not define an absolute value for MinChannelTime and MaxChannelTime. The author
looked into the Android source code and found that Google’s implemented just a constant
MaxChannelTime waiting time of 30 ms per channel. Thus, in theory, it will take at least

390 ms to scan all /3 channels.

Table 6.1 Passive and active scanning time in 5 hours with the two experimented phones.

Passive Scanning Active Scanning

Nexus 4 | Samsung S5360 | Nexus 4 | Samsung S5360

Slowest scan | 4561 ms 4418 ms 1045 ms 1532 ms
Fastest scan | 3712 ms 3041 ms 944 ms 1400 ms
On average | 4023 ms 4014 ms 962 ms 1419 ms

To experiment the waiting time of active scanning and passive scanning in the real-
world, two Android phones (Google Nexus 4 and Samsung Galaxy S5360 Y) were used to
continuously scan for WiFi APs in one spot in the building of the RH test bed. More than
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30 APs were discovered on average per scan. Table 6.1 suggests that the actual scanning
time for both active scanning and passive scanning were longer than the theoretical ones.
Overall, it took about a second per scan for active scanning, and about 4 seconds per scan
for passive scanning. Clearly, active scanning is the preferred choice for fingerprinting with
shorter scanning time, and the ability to pick up hidden APs. However, there is a higher
chance that one or more APs are not seen in a single scan with this option. In addition, the
user is often on the move, thus, there will not be sufficient time to perform several scans per
position in real-time.

To verify the impact of the Android active scanning process on the number of missing
APs, the WiFi APs were scanned at 5 different positions in the building of the RH test bed,
where the APs’ coverage of these positions is known. For the static-phone experiment, the
phone was left at these fixed positions. For the moving-phone experiment, the phone was
held by a user who slowly moved it in the same position. Both experiments were performed
in the same amount of time of /0 minutes. The measuring process took place outside the of-
fice hours to minimise the impact of the human movements and the environmental changes.
This experiment revealed some interesting correlations between the number of missing APs
and the WiFi RSS in the same period of time. Firstly, with over 3,000 static WiFi scans,
about one third of them had missing APs. Interestingly, for the same number of moving
WiFi scans in the same positions, about 43% of them contained missing APs, which was
a higher number. It may be the instability and the sensitivity of the phone’s antenna that
contributed to this problem. Secondly, it was suggested that the weaker the RSS was, in
other words, the further the user was to the AP, the more likely the AP was missed during
a WiFi scan (see Figure 6.1). This is understandable, because the signal of those APs was

fading quicker.

6.2 Detecting and correcting missing WiFi APs

To detect the missing APs, it is assumed that the user is present when the APs go missing.
In other words, the phone can observe the complete signal data at position A when all APs
are functional, and the incomplete signal data at the consecutive position B when some APs

are missing. An AP is declared as missing if:
* A strong AP was observed at position A. However, the same AP is not seen at B; or

* There is a big difference in positioning prediction from A to B. All the weak APs that

appeared in A but disappeared in B will be assumed to be missing.
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Fig. 6.1 The likelihood of missing APs based on the WiFi RSS. Weak APs are prone to be
missing. Moving phones during WiFi scans are more likely to experience missing APs.

The above detection phase serves as a pre-caution to alert the administrator to investigate
the presumed missing APs. The recovery phase, however, is only triggered by the second
condition, that is, there is a big difference in the positioning prediction between A and B,
because, ultimately, the only criterion the system cares about is the positioning accuracy.
The positioning threshold to trigger this phase should include the gap between A and B,
as well as taking into account the average positioning error when A and B are in the same
position. For instance, the distance between A and B is / metre, the underlying algorithm
used to estimate the user position is W-KNN, which has a positioning error of 3.5 metres on
average for the RH test bed. Thus, the threshold should be about 4.5 metres. More details
about this positioning threshold will be evaluated later on. The steps to estimate the RSS

for the suspected missing APs are outlined below.

(i) A list of all APs which appear in the last position A, but disappear in the current
position B is complied. The list is sorted in decreasing RSS, so that, the APs with
stronger RSS rank first: L = {APy,...,APy}.

(i) Ateach step, one AP in this list, starting from the strongest AP; will be considered. At
step K, all APs {APy,...,APx} will be considered.

(iii) For each suspected missing AP, eight WiFi RSS {—30,—40,...,—100} (dBm) within
the /1, -100] (dBm) theoretical interval with a step length of /0 dBm will be tested.

(iv) For each step, a positioning prediction using the estimated RSS for all suspected miss-
ing APs will be made.
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(v) The process terminates as soon as the distance between the last position A to the posi-
tioning prediction is below the threshold discussed earlier. The estimated RSS of the

current positioning prediction will be used as the final result.

This recovery phase was based on three observations. Firstly, stronger APs have more
impact on the positioning prediction, hence, they should be prioritised over weaker ones.
Secondly, it is not necessary to test all /00 theoretical WiFi RSS, because some very high
RSS within /-1, -20] (dBm) did not appear in the training database of this thesis, and may
never be observed in the real-world at all. In addition, the indoor WiFi RSS has a roughly
10 dBm variation, as discussed in Chapter 5. Thirdly, if the number of suspected missing
APs is low, it may be possible to trial all the RSS with all the suspected missing APs, and
the estimated RSS with the smallest positioning distance to the previous position A will be

chosen.

6.3 Evaluation of performance

This section assesses the proposed detection and recovery phases for the missing APs. The
experiments in this chapter were performed on the RH and the Cam test beds only, because
the training examples in the UJI dataset are a mixture of contributions from multiple devices,
and thus there is no continuity of the WiFi RSS in consecutive training positions. To work
out the positioning prediction, Naive Bayes and W-KNN will be used. For the detection
phase, when an AP is missing, it will be given a -/00 dBm measure in the case of W-KNN.
In the case of Naive Bayes, a small constant will be given to each posterior probability of

the AP to avoid the probability of the training example being zero.

6.3.1 Generating the fingerprints with missing APs

For this evaluation, the training set was separated into pairs of fingerprints (r, ') of con-
tinuous positions. Since there are several fingerprints at each training position, only the
most complete fingerprints with the highest number of recorded APs were selected for this
experiment. To create a fingerprint with missing APs, the RSS of each AP, (1 <i < N) in
¥ = (APy,...,APy) was removed to generate N incomplete versions of the same fingerprint.
This process was repeated with two APs being removed, until (N — 1) APs were removed.
However, due to the high number of APs in each fingerprint (up to 38 for the RH test bed,
and /3 for the Cam test bed), a smaller test set of 7,000 fingerprints with missing APs was
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randomly selected for each test bed. The chosen test fingerprints cover all possible number
of missing APs, from 7 to 37 for the RH test bed and from / to 12 for the Cam test bed.
For each pair of test samples, the system tries to detect the missing APs using the com-
plete reading r of the previous position, based on the two criteria set out in Section 7.3. For
the evaluation purpose, W-KNN and Naive Bayes approaches will be used as the algorithms

to estimate the position of the fingerprint.

6.3.2 Detection of the missing APs evaluation

Figures 6.2 and 6.3 demonstrate that out of all the fingerprints with missing APs, 72% of
them were successfully flagged with Naive Bayes and 69% with W-KNN, for the RH test
bed. This result implies that Naive Bayes seems to be more sensitive to the missing APs
than W-KNN. Both algorithms had no issue with the first cue when a strong AP was not seen
in the fingerprint. The difference in the detection rate was caused by the second cue, that is,
there is a big difference in the positioning prediction between the two fingerprints, and W-
KNN seems to cope well by returning close positioning predictions even with the missing
APs. A similar result was observed for the Cam test bed. For the evaluation purpose, the
positioning difference to trigger the second condition was set at 4.5 metres for the RH test
bed, 2.8 metres for the Cam test bed, and strong APs were those higher than -70 dBm. The
assumption was that the user may not travel more than 4.5 metres within two consecutive
WiFi active scanning of about a second apart, including the 3.5 metre average error for the
RH test bed. For the Cam test bed, the distance between two consecutive positions is 30

centimetres, and the average positioning error is about 2.5 metres.

Weak APs with Weak APs with
big error detected big error detected
(7% (4%
Weak APs with
small error
Weak APs with undetected (25%)
small error
undetected (28%),
Missing strong APs
Missing strong APs detected (71%)
detected (65%)
(a) RH test bed. (b) Cam test bed.

Fig. 6.2 Successful detection rate of missing APs using Naive Bayes.

The readers may be concerned of the high number of un-detected cases, with 28% to
31% undetected test cases for the RH test bed, and 25% to 26% for the Cam test bed using
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detected (65%)

(a) RH test bed. (b) Cam test bed.

Fig. 6.3 Successful detection rate of missing APs using W-KNN.

W-KNN and Naive Bayes. Nevertheless, it is worth noting that these undetected cases had
weak missing APs in the range of [-99, -70] (dBm) and the difference in their positioning
estimation was minimal (less than 3.5 metres for the RH test bed, and /.8 metres for the
Cam test bed), which was not picked up by either algorithm.

Figure 6.4 demonstrates the relationship between the number of missing APs and the
positioning error. This result suggests that the fewer the APs left, the less accurate the
positioning prediction was. The accuracy went from about 4 metre error when just two APs
were missing, to 7 metre error when /0 APs were missing for RH test bed using Naive
Bayes. Performance-wise, W-KNN was more resilient against missing APs than the Naive
Bayes, with up to about 2 metres more accurate on average for the RH test bed, and about
1 metre for the Cam test bed. This is understandable, because Naive Bayes relies much on
the probability of the missing APs” RSS. Although this experiment showed all the possible
scenarios including when all APs but one went missing, these cases are unusual, and it is

more likely that only a few APs may go missing in the real-world.
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Fig. 6.4 The impact of the number of missing APs on the positioning estimation.
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To understand how much the strength of the RSS may influence the positioning estima-
tion, Figure 6.5 illustrates the relationship between the maximum RSS of the missing APs
and the positioning error it causes. It suggests that the stronger the missing APs’ RSS were,
the bigger the positioning error would be, for both W-KNN and Naive Bayes. The changes
in the positioning error were relatively small for weak RSS within /-99 -70] (dBm), the tran-
sitional period happened from -70 dBm onwards, where up to 9 metre error was observed
for the RH test bed, and up to 5 metre error was observed for the Cam test bed with Naive

Bayes.
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(a) RH test bed. (b) Cam test bed.

Fig. 6.5 The impact of the strength of the RSS on the positioning estimation.

6.3.3 Estimating the missing APs’ RSS evaluation

For this evaluation, the system tries to estimate the RSS for those missing APs, according
to the algorithm discussed in Section 6.2. Ideally, the estimated RSS is preferred to be as
close to the actual RSS as possible. Figure 6.6 illustrates that the missing APs’ RSS were
successfully estimated using both W-KNN and Naive Bayes with minimal difference to the
actual RSS. For both methods, the majority of the estimated RSS was well within 20 dBm
of the true RSS.

To understand the benefit of the above estimated RSS, the next experiment compares the
positioning prediction of the fingerprints with the estimated RSS and the same fingerprints
with the missing APs. In other words, this experiment demonstrates how much improvement
the positioning estimation will recover with the estimated RSS. Figure 6.7 illustrates a strong
performance improvement from the fingerprints using the estimated RSS in this chapter.
Compared to the same fingerprints where the missing APs were simply ignored by assigning
a -100 dBm for W-KNN, or a small constant to avoid zero probability for Naive Bayes, the

positioning error was reduced from /0.5 metres, 80% probability to about 6 metres, 80%
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Fig. 6.6 The difference between the estimated RSS and the actual RSS.

probability with W-KNN, which is about 40% improvement for the RH test bed. With the

Cam test bed, the positioning error was reduced from 7 metres, 80% probability to about

4.5 metres, 80% probability with W-KNN.
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Fig. 6.7 The performance accuracy of the fingerprints with the estimated RSS.

6.4 Summary and further work

This chapter tackles the missing APs problem, which happens when the WiFi RSS are col-
lected in real time. A method to identify the potential missing APs and how to recover them
was outlined. The approach used in this paper is entirely programmatic and self-contained.
The empirical experiments demonstrated that the higher the number of APs that went miss-
ing, the less accurate the positioning estimation became. In addition, the stronger the RSS
of the missing APs were, the bigger the positioning error would be. The RSS estimation

process was demonstrated to successfully recover the RSS for the missing APs to within 20
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dBm of the actual RSS. Finally, the chapter highlights the strong improvement of the posi-
tioning prediction using these estimated RSS, compared to the situations where the missing
APs were ignored. A potential extension of this work is to incorporate more information
such as using the whole RSS sequence to spot the potential missing APs, rather than just
two consecutive readings.

So far, this thesis has explored the use of the indoor WiFi RSS for location fingerprinting.
The next chapter will assess a different use of the WiFi RSS for outdoor positioning, in the

form of co-localisation.



Chapter 7

Outdoor co-localisation with the mobile
phone and the public WiFi Access Points

“We must never make experiments to confirm our ideas, but simply to control
them.”
— Claude Bernard (1865).

Mobile phones and the internet have integrated into daily human life. More importantly,
the wireless infrastructure has improved significantly in recent years to help transferring
the information amongst the devices. People leave real-time digital footprints everywhere.
These footprints may be used to track and to study the human contacts. However, this
information seems to be largely neglected so far.

In this chapter, the possibility of people co-location detection is investigated through a
series of experiments with the outdoor WiFi RSS and the mobile phones. As most people
own a smart phone, a contact between two persons can be regarded as a handshake of the
two phones. The novel feature is that the proposed method does not require GPS coverage or
real-time mapping. Each person only needs to install an Android app which silently records
the WiFi RSS in the phone’s background. This data will be analysed off-line to detect the
potential contacts. Several measurement campaigns in the real world were conducted to

verify the feasibility of detecting such co-location.
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7.1 Introduction to mobile phones outdoor co-localisation

Co-localisation is the process of identifying whether two persons are in the same position
at the same time. If they are co-located, there is a possibility that both devices observe the
same signal fingerprint. Given a time-stamp for each recorded signal, these contacts may
be detected. This approach is considerably different from the general outdoor localisation,
since there is no need to maintain a map, nor require any knowledge of the exact location of
the phone at any moment. Instead, each mobile device collects its own signal trait privately
through-out the user’s journey. These data will be analysed off-line by an administrator to
detect the possibility that the users were in the same position at some points during their

journey. The key features of this approach are:

(1) Only co-locations are recorded, when the two phones are close together without the

need of detecting exactly where they are.

(i) An Android app running in the phone’s background to take care of the recording pro-

cess. No signals are sent out.
(ii1)) The users have full control of whether to allowing tracking themselves.

(iv) The tracking process uses the existing outdoor WiFi APs. The proposed idea has been

tested in challenging, uncontrolled city environments.

Theoretically, it is possible to invert the proposed system to have the WiFi APs track
the mobile phones. This structure has the advantage of requiring no additional code on the
phones, at the expense of a higher processing load on the APs, which may have to track a
huge number of users simultaneously. In addition to the scalability issue, it is unlikely such
changes can be made on the public APs, without permission from the network providers.
On the security side, it would be undesirable for the users to be forcibly tracked by the APs.
The users’ anonymity is broken, because he can be identified by his GSM mobile SIM card
number or the phone’s WiFi MAC address. In contrast to the original approach, the users

can simply stop the tracking app without disrupting normal WiFi usages.

7.2 The applications of WiFi outdoor co-localisation

Some potential practical applications of mobile phone co-localisation include epidemic
tracking, with a network of registered participants. Each patient uses his mobile phone

to input his current symptoms, which are managed by a server. At any time, the system can
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work out the probability that the user may be infected. To discover the origin of an unknown
disease, the doctor can backtrack the patients’ contact history with other registered people
in the same system.

In 2011, the FluPhone project was launched to track the spreading of a disease dur-
ing a pandemic [96]. It captures the physical proximity information of other nearby users
via Bluetooth. Both of the proposed system in this chapter and FluPhone aimed to pro-
vide mobile phone localisation for epidemic tracking. However, there are two key differ-
ences. Firstly, this chapter do not record the physical location of the users. Secondly, while
FluPhone uses GPS and the Bluetooth signal to discover nearby handsets in real-time, the
proposed approach analyses the off-line signal data to discover such contact.

Outdoor vehicles’ tracking without GPS has also been reported [43, 57, 76]. These
systems made use of the cellular network or WiFi to provide the positioning service in the
absence of GPS. However, they all used the signal strength from the station to work out the
distance to the vehicle. Whereas, the proposed approach in this chapter looks at the pattern

of the WiFi RSS to consider if two devices are in close proximity.

7.3 The wireless signals candidates

Signal availability is the most important criterion to decide what type of wireless signal to be
used. Ideally, the signal candidate should be available in both the indoor and outdoor space
for maximum coverage. Two stand-out candidates to be considered are the WiFi signal, and
the cellular signal.

The cellular signal coverage has increased significantly in recent years, thanks to the de-
ployment of more and more phone towers [39]. However, the Android NeighboringCelllnfo
class used to access the cellular information is phone-dependent and network-dependent. At
the time of testing, many Samsung phones did not work.

The WiFi networks are popular indoors, but were not so popular outdoors a few years
ago. In recent years, the communication service companies such as BT and Vodafone have
been actively set up new outdoor WiFi APs to provide the wireless services to their cus-
tomers on the streets. In particular, over 5 millions outdoor WiFi APs were estimated to be
available in the UK in 20/2. In the conducted experiments, there were always at least /10
available APs at any experimented position in London (see Figure 7.1). Many areas in the
central London had more than 40 available APs. Another example is the commercialised

Skyhook project!, which provides a world-wide WiFi RSS to physical location mapping to

Uhttp://www.skyhookwireless.com - last accessed in Sep/2016.
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alleviate the need of GPS coverage [68].

Total hotspots in view: 506,140 8 =
L] A e Buckhurst H lr_-.‘!ap -
s - -
¢ ) lanmore Edgware
Lo
Woodford
ner, i~
2
Frarrow
d
Halloway IIford
:|: Wembley Brent Park
itholt =y
(210 Barking
Gregnford
501 ]
- m MARYLEBONE
thall oL
2 SHEPHERD'S London
BU!
BUSH, WESTMINSTE
LAME
g [ 2308 ]
Brentford 5:-‘1 [13212 [« e
4
3 13205}
%ﬂ
5,
inslow Richmond o: Welling
Be
Twickenham
2214]
Teddington, Sidcup
ampton Kingston Chislehurst
upon Thames
Mitct Bromley
New Malden Itcham Thornton
Surbiton Morden Heath
joigeaiey Xl Map data ©2014 Google | Terms of Use  Report a map error
(7] Hotspot coverage: e Premium Venue Lots Quite 3 few Not so many

Fig. 7.1 The coverage of BT WiFi hotspots in London, recorded in November 2015.

Some popular wireless signals such as Bluetooth and Infrared have restricted range,
and are not available outdoors. Other long-range signals such as radio FM are available
outdoors, but require additional decoder on the handset to read them. Such decoders are not

widely supported by current smart phones. Thus, the WiFi signal remains the most viable
candidate.

7.4 The statistical properties of the outdoor WiFi RSS

In this section, two Android phones (Google Nexus 4, Samsung Galaxy Y S5360) with an
Android app (as described in Chapter 2) were used to collect the WiFi RSS. The experiments
in this section were carried out in different outdoor locations to assess the following criteria,

which are important for the feasibility of outdoor co-localisation.
(i) The WiFi RSS vector recorded from any two co-located phones are similar.

(i1)) The WiFi RSS vector recorded at different positions are distinguishable.
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While the majority of the literature investigated the WiFi RSS for indoor APs [41, 42,
48], the experiments in this chapter looked at the signal properties of the outdoor APs for
two reasons. Firstly, the outdoor environment changes much faster and is more volatile than
the indoor counterpart, because of the dynamic of the people movements. Secondly, the
public outdoor APs are commercial long-range transmitters that offer further broadcasting

range than the indoor ones.

7.4.1 The similarity of the WiFi RSS in fixed positions

When the two phones are co-located, it is assumed that they should hear the same RSS from
nearby APs. Figure 7.2 demonstrates the histogram distribution of the RSS from the same
WiFi AP, when the two phones were positioned next to each other in a static position. In
total, 6,130 WiFi RSS were collected in half a day. In this experiment, the RSS range was
as wide as 20 dBm, which contrasts the /0 dBm interval reported for indoor WiFi RSS [41].
The maximum and minimum readings observed from the Google Nexus phone were -60
dBm and -77 dBm respectively, while they were -56 dBm and -75 dBm for the Galaxy Y
phone. However, the majority of signals concentrated around the most occurred RSS for
both phones. Of all the histograms being observed at different times, all of them had a near

Gaussian left-skewed distribution.
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Fig. 7.2 Outdoor WiFi RSS distribution histogram.

Despite the 20 dBm variation over half a day of each phone, by comparing the signal
reading of the two phones at any moment, the maximum difference was found to be just 77/
dBm (see Figure 7.3). The signal difference was noticeably small during night time, and got

bigger by lunch time.
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Fig. 7.3 WiFi RSS difference between the two phones over times.

Out of all the observations, 91/% of the signal difference between the two phones was

less than 4 dBm. They had the exact same RSS reading for /6% of the time. The majority

of the signal difference was just / dBm, 34% of the time (see Figure 7.4).
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Fig. 7.4 Percentage of RSS difference between the two phones.

With the same data, in terms of the number of discovered APs, the Google Nexus phone

consistently observed 9 to /0 APs per scan, while that number varied from 5 to /0 for

the Galaxy Y phone. However, both models found /0 APs for most of the time in this

experiment (see Figure 7.5).

These experiments suggested that the RSS from more than one APs should be considered

when comparing the two RSS vectors. Despite the large 20 dBm variation of the outdoor
WiFi AP over half a day, an instant snapshot of the two RSS of the same AP from both
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Fig. 7.5 The distribution of the number of discovered APs per scan.

phones has less than 4 dBm difference, 91 % probability.

7.4.2 The variation of the WiFi RSS at different positions

When the distance between the mobile phone and the AP increases, the RSS becomes
weaker. This feature is important to distinguish two non-colocated signal vector. The re-
maining question is how far should the two handsets be, so that their signal readings can be
clearly distinguishable. Figure 7.6 demonstrates the correlation between the WiFi RSS and
the distance from the phone to the AP. The starting point is the location where the strongest
RSS can be heard. The phone was then moved away in a straight line from that position,
and stopped approximately every 30 metres to measure the RSS.

It was observed that the signal variation was high for stronger RSS, and became smaller
as the signals faded away. The WiFi signal was overwhelming amongst all the ambient
noises at a distance of about /70 metres from the initial position. This result shows a much
greater range of the industrial outdoor AP, compared to the short /5 to 20 metre distance
of an indoor AP. This experiment suggests an approximate 5 to /0 dBm difference between

two consecutive locations of 30 metres apart, assuming they are in a relative straight line
from the AP.

7.4.3 The correlation of the WiFi RSS at the same AP

If the environment is stable, it is assumed that the WiFi RSS should not change over time.

To verify if there is any signal interference amongst the WiFi RSS, this experiment applies
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Fig. 7.6 WiFi RSS large scale variation.

the Wide-Sense Stationary (WSS) process to verify the stationary property of the RSS at
different times for the same AP [69]. Two conditions must be met for a signal reading to
be stationary. Firstly, the mean value of the signal distribution is a constant. Secondly, the
autocorrelation function of the WSS process is independent of the time difference at the
same AP. The WiFi RSS were recorded in a static location near Waterloo station in London,
over 4 hours in the early morning, when the environment was relatively stable. The signal
sequence was divided into chunks of / hour to compare the segments. Table 7.1 shows that
the mean and standard deviation of the four sequences were similar, which satisfies the first
WSS condition. Despite the effort to eliminate the ambient noises, there may be some minor

changes in the environment, which explains the small differences in the statistical values.

Table 7.1 WiFi RSS correlation at the same AP.

5-6am 6-7am 7-8am 8-9am
Mean -68.3dBm | -68.9dBm | -68.9 dBm | -68.8 dBm
Standard Deviation 2.74 2.48 2.68 2.35

Figure 7.7 demonstrates the 4 correlograms of 1-hour segment. Interestingly, although
the mean and the standard deviation values of the 4 segments were similar, the correlograms
suggested that the individual signal was mostly independent. There were some correlations
among the consecutive signals in the early hours (see Figures 7.7a, 7.7b, 7.7c). However,
the last hour’s correlogram was non-correlated because of the signal variation caused by

more people going to work (see Figures 7.7d).
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Fig. 7.7 1-hour signal correlograms at the same AP.

Although the correlograms illustrates that the WiFi RSS seemed to be random over a

long period of time, Figure 7.8 demonstrates that the RSS were correlated in just 10 seconds.
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Fig. 7.8 10-seconds signal correlograms at the same AP.

This experiment was repeated with different segment sizes of /0 minutes, /5 minutes

and 30 minutes to confirm the same results. The results suggested that the outdoor signals

are independent for a long time interval. This finding is important to assure that the two

signal readings at two different times are distinct and non-related. However, the signals are
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stable and correlated in a short period of time, which means it is possible to match two signal

readings in a short interval with good accuracy, without having them precisely co-located.

7.4.4 The correlation of the WiFi RSS at different APs

There are just /3 WiFi channels in which many devices are operating on. Therefore, the
signal interference is likely to happen. For this experiment, the WiFi RSS were collected
from three APs at the same time in / hour. Each AP was at least /0 metres away from the
others. Table 7.2 shows a strong distinction of the mean and the standard deviation for each

AP, from the handset’s location.

Table 7.2 WiFi RSS’s mean and standard deviation from different APs.

Mean Standard Deviation
AP 1 | -69.65 dBm 3.98
AP2 | -849dBm 2.7
AP 3 | -89.1 dBm 1.67

Each pair of signal sequences from the 3 APs are compared using the Pearson formula
to find any correlation caused by the signal interference. Table 7.3 shows that all correlation
co-efficients are negative (+1 means fully related, and -1 means non-related), which con-
firms that the WiFi RSS from different stations are independent. The IEEE 802.11 protocol
may have helped to minimise the interference amongst the APs on the same channel. This
experiment suggests that the WiFi RSS from multiple stations may be considered at the

same time to better match the signal vectors.

Table 7.3 WiFi RSS correlation amongst different APs.

Correlation co-efficient

AP1-AP2 -0.198
AP1-AP3 -0.292
AP2-AP3 -0.012
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7.4.5 Influences by the human body on the WiFi RSS

The majority of the human body are water, which is a strong signal attenuator. Since the
mobile phone is often held close to the body, and in most cases, inside the trousers’ pocket,
the WiFi RSS may be affected. This section analyses the influences of the human body on
the WiFi RSS. Firstly, the RSS difference, based on how the phone is held, is investigated.
Most smart phones are equipped with an omni-directional antenna, which can broadcast and
receive the signals in full 360 degrees. A mobile phone was set up on a flat table in a clear
outdoor area. The phone was then rotated to each of the 8 cardinal directions (N, NE, E,
SE, S, SW, W, NW). For each direction, it measured the WiFi RSS several times for a few
seconds when there was nobody near the table. The experiment was repeated with a person
holding the phone.

Figure 7.9 suggested that although the human presence did have an impact on the signal,
the RSS of each direction was comparable in both cases. There was up to 6 dBm difference
in the RSS with the human presence. There was no linear relationship among the signals in
different directions. Thus, to reliably compare two RSS vectors, each measurement should
be accompanied by a cardinal direction which is provided by the compass sensor of the

mobile phone.

5 ]
-69.1 -63.6

(a) With human presence (b) Without human presence

Fig. 7.9 WiFi RSS (dBm) in different orientations with/without the human presence.

The second experiment investigated the stability of the WiFi RSS over 30 minutes in
Bond Street, a crowded street in central London during rush hours, and in the same street
at the same location in the early hours with fewer people. The signal was collected every
3 seconds. Figure 7.10 demonstrates a strong signal variation during the rush hours with
a standard deviation of 3.98, compared to 2.86 of that during the early hours. There is
no simple solution for such phenomenon, because the environment changed drastically in
a short period of time. The experiment suggested that the WiFi RSS cannot be compared

reliably in the same position in a crowded environment in different times.
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Fig. 7.10 WiFi RSS during and before the rush hours.

7.5 Handling the problem of heterogeneous mobile devices

The mobile phone manufacturers implement their own WiFi antenna and chip, which may
potentially affect the receiving RSS on the mobile device. For example, in the experiments,
the Nexus phone was a newer phone with a bigger antenna than the old Samsung Y, thus
it was able to discover more APs. The attempts to tackle the heterogeneous devices issue
in the literature can be broadly split into two categories, which are calibration-based and
algorithm-based. With the first approach, the new device is calibrated manually or auto-
matically within the tracking system, using known landmarks in the building [53]. With
the algorithm-based approach, some authors used a linear transformation model and kernel
estimation [30, 67], while the others compared two pairwise signal vectors directly [39, 46].
Since the chapter’s goal is off-line co-localisation detection, the WiFi RSS of each mobile

device are simply normalised so that they are directly comparable.

Without loss of generality, given an RSS vector representing the WiFi RSS of N nearby
WiFi APs, R_SS' = (s1,...,5n), with s; is the RSS (dBm) observed from AP,. Each individual

s; is divided by the strongest RSS s,,, observed in the whole journey.

e p—— S1 A\ SN
RSShom = (2L 52 N

)
Smax Smax Smax

= (s],8h,...,8N) . (7.1)

600
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7.6 Two algorithms to calculate the matching rate of two
WiFi RSS vectors

Given two WiFi RSS traits from two phones which represent the journey of two persons, the
system identifies at which parts of the journey they were co-located. To achieve this goal, it
needs a method to calculate the similarity of two WiFi RSS vectors. This section outlines
two algorithms to compute such measure.

The first algorithm is based on the appearance of the APs alone. The benefit of this
algorithm is that it ignores the magnitude of the WiFi RSS, which may be highly fluctuating
due to the harsh outdoor environment, as discussed earlier. The two WiFi RSS vectors
A and B are considered fully matched, or very similar, if they have the same number of
recorded APs, and for every AP recorded by Phone 1, it is also observed by Phone 2, and
vice-versa. If the two signal vectors share some APs in common, but also contain their own
discovered APs, the similarity is calculated as the number of overlapped APs, divided by
the total number of APs. This measure will be called the matching rate, and the closer it is
to 100%, the more similar the two signal vectors are. The idea of this measure comes from
the Jaccard index [72].

#(AP € A&AP € B)
#(AP € A||AP € B)

matching_rate_AP(A,B) = (7.2)

The above approach worked relatively well when a large number of APs was observed.
However, the measure was not high when the number of nearby APs was low. With the
second algorithm, the magnitude of the WiFi AP is considered. The assumption is that the
overlapped RSS from the same APs that any two co-located devices share should be strong.
If one device sees a strong AP, while the other does not, they are unlikely to be co-located.
Without loss of generality, given the WiFi RSS vector of Phone 1: X = (S1,..-,5,), and
Phone 2: B = (s},--.,8p,), the matching rate is calculated as follows, with AP, and AP/ are
the AP observed by Phone 1 and Phone 2 respectively.

matching _rate_ RSS(A,B) = .
g-rate_RSS(4,5B) " si+Y, s, AP, AP, € AUB

(7.3)

A high measure means the two devices are close, and a low one means they are further
away. Ideally, the matching measure should be closely correlated to the actual physical
distance between the two devices. The above two measures will be evaluated and compared

to the ground-truth GPS distance in the next section.
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7.7 Evaluation of performance

In the first experiment, two persons walked side by side, with a mobile phone in their pock-
ets. The two phones were synchronised to invoke WiFi scanning simultaneously every 30
seconds. When called, each phone initiates 3 continuous scans. There were 1,643 APs
recorded in an hour journey. Since the two phones were side by side, it was expected that
all 253 recorded readings to be /00% matched. However, none of the reading pair was fully
matched at any moment through-out the one hour journey using both of the above two mea-
sures. This problem was caused by the WiFi APs being missed during a scan, which has
been discussed in Chapter 7. However, since this chapter is not using any training database
like fingerprinting, and it is not estimating the user position to discover the missing APs, as
suggested in the last chapter, a simpler approach was used to alleviate the issue, that is, three
continuous scans were combined as follows. Since there is a delay in scanning the APs, it

is challenging to perform many scans within a short period of time.
(a) The RSS of the same APs within 3 continuous scans are averaged.
(b) If anew AP is found within 3 continuous scans, it is added into the signal vector.

(c) All APs with very weak signal < -90 dBm are removed.
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Fig. 7.11 Improvement in the matching rate measure based on the AP appearance by com-
bining three continuous scans.

With this approach, the number of samples with /00% matching rate was increased from
0% to 2%, and the same number for 50% matching rate was increased from /8% to 45%

based on the AP appearance. The majority of WiFi RSS vectors’ pair were around 40%
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matched with this approach (see Figure 7.11). A real-time visualisation of this experiment
can be viewed on-line?.

For the second experiment, two persons started in the same position. They walked in
different directions at /4:42 on the time line, then re-joined halfway at /4:56. The journey
finished at /5:01. All other settings were kept the same as the first experiment. Figure 7.12
demonstrates the appearance of the top /0 commonly shared APs for the whole journey.

@ ® Google Nexus
- X X Y X X X X X X X Galaxy Y
BTWiFi-2 o O o o o & & 0 0 o6 o o o o o
_WiFi Hotzone-2 o O o o e o o o o o o o [ 2 J
BTOpenzone- 2 [ N J ® & 0 0 06 0 0 o o o
Silverfleet WiFi2 ] 8 8 e o o o o 0o 0 o o0 o
Waterloo Pharos V2 o & o © 0 0 06 o 0 0 °
a
%
BTWiFi-1 o o o o e e e e e e e
Woods Silverfleet Rear Ll o o o o o o o 0 o o
silverfleet WiFi1 : o o o 6 6 0 0 0 0 O
BTOpenzone-1 e o o o o o o o o o
_WiFi Hotzone-1 : e e o o o o o o o o

14:43 14:46 14:49 15:52 15:56 14:59 15:02
Time

Fig. 7.12 The density of AP appearance over times seen by the two phones.

The matching rate started off positively at the beginning, when both phones were to-
gether (see Figure 7.13). As they went off in different routes, the matching rate decreased.
Figure 7.14a demonstrates that the phones still observed some similar APs, although they
were further apart, because of the outdoor open space. However, the observed RSS was
weak for these similar APs, as a result. The matching rate increased again as the phones ap-
proached each other, and remained stable as they re-joined (see Figure 7.14b). Both phones
observed many strong RSS, when the matching rate was high. A real-time visualisation of
this experiment on Google Maps can be viewed on-line’.

After applying the above method to combine the WiFi scans, there were 412 APs recorded
by the Google Nexus phone, and 554 APs recorded by the Galaxy Y phone. Of 252 APs
found by both phones during the 20 minute journey, the highest number of appearance of a
single AP was 15 for Google Nexus and /3 for Galaxy Y (see Table 7.4).

Zhttp://www.cs.rhul.ac.uk/~wruf265/Map
3http://www.cs.rhul.ac.uk/~wruf265/Map2
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Fig. 7.14 The matching rates of mobile phones co-localisation visualised on Google maps.
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Table 7.4 APs summary of the two phones.

Google Nexus || Galaxy Y
Total number of scans 120 120
Total recorded APs 504 558
Remaining APs after processing 412 554
Shared APs 252 252
Highest number of single AP appearance 15 13

7.8 Summary and further work

This chapter has demonstrated the feasibility of using the mobile phones and the outdoor
public WiFi APs for the purpose of off-line co-location detection. An Android app was used
to silently collect the WiFi RSS while the users travel. This data can be matched off-line to
spot the RSS similarity, which confirms if the users were in close proximity. The chapter has
described two algorithms to calculate such similarity based on a measure called the matching
rate. This measure can be calculated with just the number of available APs due to the high
number of outdoor APs, or incorporated with the RSS. Several measurement campaigns in
the real world were carried out to assess the matching rate measure with the ground-truth
GPS data. The empirical results demonstrated that the proposed measure closely reflect the
GPS distance, and the possibility of using the outdoor WiFi APs for outdoor co-localisation
is positive.

The calculation of the matching rate in this chapter was fairly basic, and was just suffi-
cient to demonstrate the feasibility of the proposed idea. A potential extension of this work
is to research other methods to compute such measure. The author has been in the process
of applying this idea to the epidemic tracking research to predict in advance the possibility

of a future outbreak.






Chapter 8
Conclusions and further work

“Endings to be useful must be inconclusive.”
— Samuel Delany.

In this chapter, the results obtained individually from the previous chapters are summarised
and assessed 1in relation to the research objectives set out earlier. The chapter concludes by

discussing the possible avenues for further research in fingerprinting.
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8.1 Summary of the main contributions

Fingerprinting has been a remarkably popular method for infrastructure-free indoor posi-
tioning in the past decade, and looks here to stay. A great deal of effort has been invested
to improve the performance of fingerprinting. However, it is commonly expected that the
positioning error of WiFi fingerprinting to be around room level on average, and may not be
able to consistently achieve sub-metre error under real-world conditions. This thesis tackles
the challenges of WiFi fingerprinting with machine learning algorithms and additional infor-
mation beside the WiFi RSS. The techniques described in this thesis are flexible and can be
adapted to most existing fingerprint-based systems. With respect to the research questions

posed in Chapter 1, the thesis identifies the following contributions.

(1) This thesis has demonstrated that the WiFi RSS alone is too noisy for fine-grained
fingerprinting. It suggested to incorporate the magnetic field to assist the WiFi RSS.
The use of the magnetic field in this thesis is original in the sense that it merges the
MFV into a sequence to represent a walking trajectory. The novel feature of the system
is the ability to predict in advance the route, and the potential destination for the users.
The thesis tested the proposed idea in a real indoor environment to demonstrate that
it did not only successfully estimate the route and the destination, but also achieved
a single positioning prediction error of 2.2 metres, 95% probability, compared to 3.5
metres, 95% probability when only the WiFi RSS of the fingerprinting database were

used.

(i1) This thesis introduces a novel supervised confidence learning algorithm, that is, to the
best of the author’s knowledge, the first approach to provide a confidence measure for
the fingerprinting research. This confidence measure is not only useful in reflecting the
uncertainty of the positioning predictions, but is also capable of delivering a prediction
set or a prediction region. Its performance has been empirically illustrated to be around
15% to 20% more accurate than the traditional W-KNN and Naive Bayes under the

same test domains.

(iii)) While most clustering-based fingerprinting approaches used only the WiFi RSS to
structure the training data, this thesis realised that the clustering process should be
applied as a supervised learning problem for fingerprinting. It proposes a novel two-
level soft clustering process that involves both the WiFi RSS and the Cartesian label.
Furthermore, the proposed clustering algorithm tackles the signal borderline challenge

by allowing the training examples to be associated with more than just one cluster.
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The empirical results demonstrated that the proposed scheme did not only reduce the

searching time, but also improved the positioning accuracy.

(iv) The thesis addresses the missing APs problem in the real-time WiFi scan, which has
been conveniently overlooked in the fingerprinting literature. It proposes a scheme to
detect and estimate the value of the missing APs using only the WiFi RSS from the
previous position. The empirical results showed that the proposed scheme success-
fully recovered the RSS value for the missing APs to within 20 dBm of the true RSS.
Compared to the common approach where the missing APs are simply given a -100

dBm value, the proposed scheme reduced the positioning error up to 40%.

(v) Lastly, this thesis presents the results of a series of experiments with the data collected
through-out several measurement campaigns in the real world to assess the feasibility
of using the public outdoor WiFi APs and the mobile phones to co-locate the people’s
position. It describes an algorithm to calculate the matching rate of two WiFi RSS
vectors, and compares the results with the ground-truth GPS distance to demonstrate

their similarity.

8.2 Further work

This section outlines five general directions to extend fingerprinting further. The detailed
extension of the proposed idea for each chapter has been discussed separately at the end of

the according chapter, and will not be repeated here.

8.2.1 Extra information from a site map

Although the approaches presented in this thesis do not require a site map of the building at
all, such map can be combined to provide extra ground-truth information to remove the vio-
lated predictions, where the user walks through the walls. This has been a popular idea with
robot-based Simultaneous Localization And Mapping (SLAM) [24, 36, 91]. The building
map is also often available for most buildings. However, the challenge of the system is to

correctly map the positioning prediction co-ordinate to the relevant point on the map.

8.2.2 Scalable fingerprinting

Although the proposed clustering technique in Chapter 3 helps to alleviate the computational

overhead to process the training database, the scalability of the whole system still partly
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depends on the total number of active users. Some potential further work to lift this burden
completely out of the system is providing the user with a portion of the training database
to work out his current position by himself. The mobile clients will communicate amongst
themselves to share their own portions of the training database they need when moving to
a new location. Thus, the central server only has to serve the clients at the beginning when

everyone first enters the building.

8.2.3 Beyond the received signal strength

The WiFi RSS is noisy since it was not designed with the localisation purpose in mind. Some
recent works started to delve into the PHY layer below to obtain the Channel State Informa-
tion (CSI). This measure was reported to be as robust as the magnetic field strength, without
losing the long-range property of the WiFi signal. Sub-metre tracking systems have been
reported [17, 74, 94]. However, CSI fingerprint-based systems fall into the infrastructure-
based category, because they require a custom WiFi driver to be installed on the WiFi APs
to allow capturing of the CSI data, which is a real challenge for real-world implementation.
Furthermore, only one WiFi adapter - the Intel NIC 5300 is currently supported by the cus-
tom firmware. The major disadvantage of using CSI is that only one AP can be inquired at
a time, which is not practical unless the user is static. Nevertheless, the information on the
physical layer provides much more insights into the distance of the user than the RSS, and

future CSI developments may reduce the above limitations.

8.2.4 Different means to perform fingerprinting

The smart phone is a ubiquitous device that most people carry with them. It is small and
contains all popular sensors. In recent years, it is getting even smaller, in the forms of the
smart watch, the smart glass and the smart bracelet. In addition, they are able to operate
alone without a Bluetooth or a WiFi connection to the phone. Thus, the users have more
options to access the positioning service. More importantly, these new technologies change
the way people hold and use them. While the phones are normally restricted in the user’s
pocket, the smart watch and smart bracelet can only be worn on the user’s wrist, thus, their
movements are more predictable than the phone’s. The smart glass, on the other hand, is
always next to the user’s eyes. Thus, it can observe the direction the user is looking at, as
well as being able to capture the full image of the surroundings. These new wearable devices
do not only provide new ways to collect data, but also deliver additional information that

may be useful for fingerprinting.
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8.2.5 Reinforcement learning with the user’s feedbacks

A highly adaptable system should be able to improve itself over time. With reinforcement
learning, the system changes its model based on the rewards received from time to time to
maximise its performance. The challenge to apply reinforcement learning for fingerprinting
is that there is often no such rewards telling the positioning system of how well it performs
at any stage. A possible means to introduce such rewards is by asking the users directly.
At the end of the journey when the user has reached his destination, he is asked to rank the
system’s performance accuracy. Based on this feedback, the system’s action is to prioritise
the training examples that lead to a good feedback, and avoids those that result in bad
feedbacks. However, the limitation of this approach is that the expectations from the users
are different. Some users are more tolerant than others, hence, they tend to give higher
rewards. This challenge can be addressed by a questionnaire, or by asking simple ‘yes/no’
question (e.g. Are you inside this room?) that help the system uniformly quantifies the
answers from all users. Furthermore, it may be beneficial to group the answers from the

same user over time, because his feedbacks are expected to be consistent.
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Appendix A

K-Means clustering

KM is a well-known hard clustering algorithm which partitions the training data into distinct
clusters. It aims to put each training example into the cluster whose centroid is closest. The
centroid is the mean of the cluster. Without loss of generality, given the training examples
(T1,...,Ty) and the total number of clusters k, KM partitions the examples into k clusters
S ={S1,...,S;} so as to minimise the following function, which sum the distance of each

training example in the cluster to the centroid, where y; is the centroid of the cluster S;.

kK M
argm;nZZHTj—uin : (A.1)
i=1 j=1

The 4 steps to perform KM are briefly summarised below.

(i) Given a number of clusters k, the algorithm selects & training examples to become the
centroids, one for each cluster. These centroids are chosen to be as far away from each

other as possible.

(i) The remaining training examples are assigned to the cluster whose centroid is closest

to them.

(iii)) The k centroids are re-calculated to be the middle examples of the newly formed clus-

ters.

(iv) The steps (ii) and (iii) are repeated until the centroids no longer change.

Although it has been proved that the above steps always terminate, the efficiency of KM
does not just depend on the number of k, but also relies on the initial chosen centroids [32,
59]. KM is normally run several times with different initial centroids on the same training

set and the best result is selected.






Appendix B

Fuzzy c-Means clustering

With FCM, the cluster is associated with a function to demonstrate the degree to which
each training example belongs to the cluster. Given a number of clusters ¢, FCM partitions
the training database {71, ..., Ty} into ¢ clusters by minimising the following squared error

function

M c
=Y Y uillTi—cjlP1<n<eo . (B.1)
i=1j=1

where ||T; —c;]| is the distance between the training example 7; and the cluster centre c;, u;;
is the degree of membership of 7; in the cluster j, and n is any positive real number which
controls the influence of the membership (i.e. the degree of fuzzy overlap).

The 4 steps to perform FCM are briefly summarised below.
(1) Matrix U=[u;;] 1s initialised.

(i1) At step k'™ the cluster centre is calculated as follows. C(k)=[cj] with U(k)

cj="0 (B.2)
Y uij
i=1

(iii) Updating U®) and U*+D
1
uij = — — (B.3)
y (sz' CJH)“
k=1 i — x|
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k+1) _

(iv) Returning to step (ii) until ||U ( U || < €, where € is a termination constant

between [0,1].



Appendix C
Dynamic Time Warping

Given two variable length sequences s = {s1,...,s,} andr = {ry,... 1, }, DTW will measure
the distance between them by finding an optimal alignment based on dynamic programming.
The idea is to find a mapping between all the points of s and 7. The DTW algorithm is
described as follows.

Data: Two sequences s = {s,...,5,} and r = {t1,...,tn}.
Result: Positioning prediction.

DTWIO, 0] =0;
fori=1—mdo

| DTWI[0,i] =oo;
end

fori=1—ndo
| DTWI[i, 0] = oo
end
fori=1—ndo
fori=1—mdo
distance = s[i] - t[j];
DTWT/i, j] := distance + min(DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1]);
end
end
return DTW|[n, m];
Algorithm 5: Dynamic Time Warping algorithm.






Appendix D
The routine training database

This section illustrates all 50 training trajectories used in Chapter 5.
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Fig. D.1 The 50 training trajectories. The blue circle denotes the starting point.
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The routine training database
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