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ABSTRACT

We demonstrate a breach in smartphone location privacy through
the accelerometer and magnetometer’s footprints. The merits or oth-
erwise of explicitly permissioned location sensors are not the point
of this paper. Instead, our proposition is that other non-location-
sensitive sensors can track users accurately when the users are in
motion, as in travelling on public transport, such as trains, buses,
and taxis. Through field trials, we provide evidence that high ac-
curacy location tracking can be achieved even via non-location-
sensitive sensors for which no access authorisation is required from
users on a smartphone.
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1 INTRODUCTION

With the growing use of smartphones! and smartphone Apps, peo-
ple are no longer just defined by who they are but also by where
they are (location) and what activity they are taking part in (social
networking/games). Many of the services provided by feature-rich
smartphone Apps require access to your location — to serve your
needs better. For example, Strava, a fitness App, revealed the lo-
cation and staffing of military bases and spy outposts around the
world. Strava collects the GPS information about their users’ activi-
ties (walking, running and cycling) and charts them over a map -
which was made public.

! A handset that can host and run applications, with additional features than just basic
text and voice call.
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A study published by AT&T [5] in 2010 showed that 19 out of
20 mobile online social networks shared location information with
third parties in a way that enabled easy identification of individual
users.

Another revelatory example of the current situation on location
privacy is the “PleaseRobMe?” that aggregated information from
Foursquare> and other location services to identify homes that were
empty — due to “oversharing” [7] of location information, home-
owners have revealed that no one is at home. Such an emergent
privacy threat is referred to as “Cybercasing” [3, 10].

Two of the major smartphone platforms (Apple iOS and Google
Android) have deployed the user’s explicit opt-in scheme for mo-
bile sensors. In this scheme, a user is asked whether (s)he would
permit an application to use a particular sensor. For this scheme,
the sensors present in smartphones are categorised into sensors
that require permission and sensors that do not. An application
that uses sensors from the latter category (that does not require
permission) is referred to as permission-less mobile App in this
paper.

In some prior work (discussed succinctly in Section 2.2), it has
been shown that some of the sensors that do not require permissions
can be used to inference the location of a user. However, in this
paper, we explore the possibility of tracking a users journey over
public transport using a permission-less mobile App. The case
scenario we consider relates to users being commuting either via a
train, bus and/or taxi and based on non-location-sensitive sensors.

1.1 Paper’s Contributions

The prime proposition of the paper is that non-location sensitive
sensors used by a permission-less mobile App can accurately (to a
high degree of confidence) location track users over public transport.
In this respect, this paper contributes:

(1) A novel scenario where an adversary may mimic the sensor
trace of a victim on a bus, by tailing him in a car behind in
busy traffic. Additionally, we examine the data collection for
four different sets of scenarios related to public transport, in
which both the adversary and the victim are travelling on:
a) a train, b) a taxi, ¢) a bus.

2 A website that states on their website “Our intention is not, and never has been, to
have people burgled". Website: http://pleaserobme.com

3 A mobile App that provides local search and discovery features about local attractions,
best eateries and other facilities - based on user feedback. Since this revelation, they
have changed their privacy policies.
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(2) A permission-less mobile App that efficiently (with low com-
putation and battery-consumption footprint) collects the
non-location sensitive sensor data.

(3) Analysis technique and results to show successful location-
tracking and location-proximity/co-location (two or more
users being in proximity to each other at a particular point
in time) using the non-privacy sensitive sensors.

In this paper, we will refer to location-tracking, location prox-
imity and co-location frequently. Therefore, the definition of these
terms in the context of this paper are:

o Location-Tracking: This relates to either collection location
information directly from sensors like GPS, or inferring
a user’s location indirectly like WiFi networks and non-
privacy sensitive sensors like accelerometer and magnetome-
ter - as discussed in this paper.

e Location Proximity / Co-Location: Proximity or co-location
detection relates to identifying two or more users being in
the vicinity to each other - either through direct or indirect
location tracking.

One point to note is that co-location without location tracking
is just an assessment whether two (or more) devices are near each
other without any GPS point of reference.

2 MOBILE SENSORS AND LOCATION
PRIVACY

In this section, we briefly discuss off-the-shelve sensors, location
privacy and prior work.

2.1 Mobile Sensor Access Privilege

Modern mobile phones (aka smartphones) are equipped with sen-
sors, which are a silicon-based design that measures physical or
environmental features. Table 1 lists the sensors available on an
Android smartphone.

Table 1: Sensor Availability on Android Platform

Sensors Privilege Access Location Sensitivity
Accelerometer No Yes+
Bluetooth Yes Yes*
Geomagnetic Rotation Vector No No
GPS Yes Yes
Gyroscope No No
Magnetometer No Yes+
Network Location Yes Yes
Pressure No No
Sound Yes Yes*
‘WiFi Yes Yes
Light No No
Proximity No No
Relative Humidity No No
Ambient Temperature No Yes*

These sensors are categorised as privileged and un-privileged
sensors. The privileged sensors are the one for whom you re-
quire explicit permission from the user (before using them), for
un-privileged sensors no user permission is required. In Table 1,
privileged sensors are represented as ‘Yes’ in the privilege access
column. Furthermore, in the location sensitive column, we identify
potential sensors that have location privacy implications. Some

of these sensors, like ambient temperature do not have a direct
inference of locations, but it can be used to build proximity infer-
ence of multiple devices to be at the same location (discussed in
Section 2.2.2) - and if one of them is sharing GPS data, location of
all other devices is easy to infer. For example, a crowd at a concert,
where an application only needs one user to permit it for using
GPS. All other devices can deny this permission, but their location
can still be inferred. The representation ‘Yes’ in location sensitivity
column means direct inference of location, ‘Yes*’ indicated indirect
inference and ‘Yes+’ indicates that you can build location profiles
of an environment (e.g., train or bus route) that later can be used
for direct inference.

2.2 Prior Work in Location Tracking and
Proximity Detection

There is a number of ways in which the location of a user can
be tracked via smartphone and associated infrastructure. The two
related methods for location tracking related to this paper are dis-
cussed as below:

2.2.1 Permission-less Mobile Applications. A mobile App collects
non-location sensitive sensors, and from this data, users location is
calculated.

Nawaz et al. [11] proposed the use of gyroscope and accelerome-
ter to profile users travel patterns and based on these travel patterns
notify the user about potential traffic alerts to enhance their travel
experience.

Following the above-discussed work, Narain et al. [9] highlighted
the privacy issues related to calculating a user location and his/her
travel patterns using the side-channels (i.e. non-location sensitive
sensors). They utilised gyroscope, accelerometer and magnetome-
ter to construct the sensors data from both real routes and simu-
lated ones (mimicking the real routes data). From this data, they
constructed the graph of routes in a city and an efficient search
mechanism to identify what profile of the three sensors matches
with the which segment of the route (in a given city). They showed
with high accuracy that they were able to identify the user routes
based on the three sensors. For this analysis, they have collected
data from an extensive simulation, where in our case we show that
this extensive profiling can be replaced by proximity (similarity)
between journeys collected from the users.

Here we would like to identify that both Nawaz et al. [11] and
Narain et al. [9] were primarily focused on the user travelling in a
car in optimal conditions (e.g., not taking into account the traffic
congestion, driving behaviour and vehicle/road conditions etc.).
These conditions in many cases influence the sensor readings and
can give false results (false positive, false negative). Furthermore,
they were looking into the gyroscope and accelerometer together
to track users. In the case of Narain et al. [9], he also utilised mag-
netometer in their papers. Our experiments, detailed in this paper
are different because:

e We collected data from taxies (car), buses and trains that
include the environmental conditions (congestion, behaviour
and vehicle/road condition).
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e For location identification, we utilised the notion of prox-
imity with a higher degree of GPS correlation rather than
route profiling.

e We use the accelerometer for taxi and bus, where for trains
we include the magnetometer. For taxi and bus, the magne-
tometer was not an effective data source in our trials.

e We also ran a bus and a car shadowing the bus, to explore
the potential of tracking users across vehicles with high
accuracy travelling on the same route at the same time.

2.2.2  Proximity Detection based on Sensors. Halevi et al. [4] demon-
strated the suitability of using ambient sound and light for proximity
detection. Here, the authors analysed the sensor measurements col-
lected for 2 and 30 seconds duration for light and audio respectively
- using a range of similarity comparison algorithms. Extensive ex-
periments were performed in different physical locations, with a
high success rate in detecting co-located devices.

Truong et al. [13] evaluated four different sensors. Similarly to
previous studies, their sample collection was from 10-120 seconds.
Shrestha et al. [12] used specialised hardware known as Sensor-
drone, with many ambient sensors, but did not evaluate the com-
modity ambient-sensors available on commercial handsets, did not
provide the sample collection duration, and only mentioned that
data from each sensor was collected for a few seconds.

3 EXPERIMENTAL TESTBED DEVELOPMENT

This section describes our testbeds including the test devices, test
environments, and the data processing platform.

3.1 Test devices

Six Android devices (five phones and one tablet) were used in this
research, namely the Galaxy Nexus, LG Nexus 5, Samsung S4, Sam-
sung S8, Lenovo Phab Pro 2, and Nexus 9, covering a variety of
Android OS and sensor manufacturers. Their sensors’ specifications
are detailed in Table 2. Measurement-wise, all sensors on our test
devices achieve a fine-grained sampling rate at a minimum of 49.65
Hz (about 50 samples per second) for the magnetometer and 99.5
Hz for the accelerometer, with the latest model capable of doubling
these numbers. In all experiments, our devices were held naturally
in the hands, left in the pocket or in the bag of their respective own-
ers. Their local clocks were synchronised before each experiment
by setting to the same time zone, then connecting to the Google
server to get the current time.

Table 2: The sensors specifications of our test devices.

G.Nexus Nexus5 S.S$4 S.88 Lenovo2 Nexus9

Magnetometer 00 b 5oH;  100Hz 100Hz 50 Hz 100 Hz
sampling rate
Accel

ceelerometer 01 200Hz 100Hz 500Hz 200Hz 100 Hz
sampling rate
Release date 2011 2013 2013 2017 2016 2014
Android 08 43 501 501 7.0 6.0.1 6.0.1

3.2 Test environments

We set out to examine the sensor traces on all types of public
transport in London (i.e. taxi, bus, and train), using our test devices

N = .494%019:30

N = .094% 019:29 =]

Label < BATTERY

Iondon-egham\ Power saving mode

Status: waiting

@ Normal
O Fastest

RECORD SENSORS STOP STATION 0

App power monitor

U WiFi Magnet Fingerprinting

@) # Photos

(b) The power consumption of
our app was estimated at just
over 1% in one hour.

(a) The user interface of data col-
lection app.

Figure 1: The Android app we developed for this work.

described above. The test routes were chosen to cover a vast amount
of areas in London (see Table 3 and Figure 2).

Table 3: The details of the test routes.

Taxi Bus Train
Distance travelled 11.6 km 10 km 34 km
Duration 25 minutes 25 minutes 40 minutes
Number of stops 3 19 6

3.3 Sensor Data Collection

We developed an Android app that runs passively in the phone’s
background to record the sensors’ readings into a text file stored
locally on each device (see Figure 1a)*. The app’s interface was
intended to be minimalistic, which only requires the user attention
to specify the file name and how frequently the app should log the
sensors. The ‘Station’ button allows the users to specify if she has
arrived at a station to aid the data analysis. At the end of the trial,
the data file will be transferred to a PC for further analysis. The
format of the file is as follows. Each line describes a snapshot of
all sensors’ measure, accompanied by a time stamp. For this paper,
we will examine just the accelerometer and magnetometer. Both of
these sensors report three measures per inquiry, corresponding to
the strength along the (x, y, z)-axis.

Battery consumption wise, one hour of continuous inquiry and
writing the data to a file on one of our test models consumed as little
as 1% of battery, according to the inbuilt Android power measure
as shown in Figl. It is worth noting that our current procedure is
grossly unoptimised. The majority of the workload is originated
from the I/O operation of flushing all sensors data into the phone’s
memory 100 times per second on ‘normal’ mode. In reality, the
sampling rate could be reduced, and not all sensors need to be
recorded. Additionally, we may compress the data before logging

4Our app can be downloaded free of charge on the Google App store, by searching for
“Fingerprinting WiFi Magnet”.
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(c) The 40 minute train route. It began at Waterloo station,
and ended at Egham station.

Figure 2: The test routes visualised on Google Maps, using GPS data.

them into the memory, or reduce consecutive data with similar
readings. Hence, there is room for further improvement.

3.4 Data Processing Platform

To analyse the sensors data and plot the results, we used Matlab
(version R2017b) with the Signal Processing Toolbox, running lo-
cally on an Intel Core i7-4770k 3.50 GHz Desktop CPU with 16 GB
of RAM.

Since the sensor of each phone has different sensitivities and
sampling rates, we employed Dynamic Time Warping (DTW) to
align the sensor traces [8]. DTW is a proven method with well-
known applications in speech recognition research. In short, it
stretches the shorter trace to match the longer one by finding the
optimal warping path between them, using the following recursive
steps.

(1) Given two time series vector t = (t1,...,tym)andr = (ry,...,rn),

DTW finds the optimal warped path of length k : (p1, q1), . . .,
k

(k> q) that minimises Y, [t(p;) — r(qi)|
i=1
(2) We define D(i,j) as thé: DTW distance between t and r.
D(1,1) is initialised as [t(1) — r(1)].
(3) We recursively calculate
D(i-1, j)
D(i-1, j-1)
D(@, j-1)

D(i, j) = |t(i) = r(j)| + min

withi=1:mandj=1:n.

To quantify the difference between each data sample, we used
two metrics, namely the Euclidean distance and the Kullback-Leibler
metric. Since the sensor trace may have different lengths, the DTW
score is calculated as the sum of the difference between all aligned
samples on the two traces, normalised by the length of the optimal
warped path.

To assess the uniqueness of each sensor trace (i.e. what is the
chance of two different routes having a similar sensor trace?), we
will apply the ‘Fourier transform’ on each trace [14]. In short, it mea-
sures every possible cycle to identify if there are repeated patterns
within the time series.

4 RESEARCH QUESTIONS

Having understood the theories and the objectives of permission-
less Apps for co-location tracking, we are now in a good position
to set out the following research questions to be examined later on.

(1) How similar are the accelerometer and magnetometer traces
of passengers on the same public transport (i.e. taxi, bus, and
train)?

(2) Is it possible for an adversary driving on a car to mimic the
sensor trace of a victim riding on a bus on the same road? If
so, how similar the traces will be?

5 EMPIRICAL EXPERIMENTS

This section conducts the experiments on the taxi, bus, and train to
assess the research questions set out in Section 4.

5.1 Experiment with the sensors trace in the
taxi

To verify the similarity of the accelerometer and magnetometer’s
readings in the same car, three passengers shared one taxi for a
25-minute journey through central London (see Figure 2a). The
first passenger left the taxi after 9 minutes, and the second one
followed up after 18 minutes. Both of them continued walking for
a few minutes after leaving the vehicle.

Figure 3 demonstrates that the accelerometer is capable of pick-
ing up the slightest changes in movements, not just when the car
accelerates or decelerates, but also as it goes through speed bumps.
The high measures from the accelerometer happened when the first
and second passengers walked.

If we consider the portion of the traces, when all three passen-
gers were together in the taxi, the overlapped sequence’s shape
was remarkably similar (see Figure 4a). To quantify this similarity,
we compared the DTW scores of different portions of the traces
including those that are not overlapped (see Table 4). The co-located
traces scored consistently lower than non-co-located ones.

However, the magnetometer’s traces of the passengers were
relatively flat, with little spatial variation throughout the 9-minute
drive (see Figure 4b). In addition, the spectrogram indicated that
there were repeated patterns, due to the magnetic field’s low spatial
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(b) The magnetometer measures in the taxi have very low spatial varia-
tion.

Figure 4: The overlapped sensor traces of three passengers
travelling together in the same taxi for 9 minutes.

variation (see Figure 5). Since taxis are running on petrol, they do
not alter the onboard magnetic field. The roads and pavements are
a mixture of cement and sand which have no impact on magnetism.
These conditions made it impractical for location tracking with the
magnetometer traces.

Table 4: The DTW scores between different accelerometer
traces on taxi and on foot (lower number means more sim-
ilar). The co-located traces scored consistently lower than
non-colocated ones.

Euclidean Kullback-Leibler

Co-located Galaxy Nexus & Nexus 5 on taxi 0.0776 0.0012
Co-located Galaxy Nexus & Samsung S8 on taxi 0.0991 0.0021
Co-located Nexus 5 & Samsung S8 on taxi 0.0525 0.00057
Nexus 5 on foot, Samsung S8 on taxi 1.8472 0.66055
Galaxy Nexus on foot, Samsung S8 on taxi 2.3226 1.1896

5.2 Experiment with the sensors trace on the
bus

To verify the similarity of the sensor readings on the bus, four
surveyors rode the same bus for 25 minutes (see Figure 2b). They
sat in different places on the bus with their phones held naturally
in their hands or left in pockets. Compared to the previous taxi
experiment, the bus environment possesses similar features (i.e.
both are petrol-based vehicles, running on the same road-material
surface). Hence, its accelerometer and magnetometer traces are
similar to the taxi’s.

We applied the same methods to visually and computationally
compare the sensor traces, as in the last experiment. A visual pre-
sentation of the four accelerometer traces revealed a similar shape
(see Figure 6a), which was re-affirmed by their DTW scores (see
Table 5). The magnetometer measure had low spatial variation, as
expected, and would not be recommended to be used for sensor
matching (see Figure 6b). Similarly, the spectrogram of the magne-
tometer trace indicated that there were repeated patterns, due to its
low spatial variation, whereas the spectrogram of the accelerometer
trace had no such indication (see Figure 7).

Table 5: The DTW scores between four accelerometer traces
on the bus (lower number means more similar).

Euclidean Kullback-Leibler

Co-located Galaxy Nexus & Samsung S8 on bus 0.10141 0.0030335
Co-located Galaxy Nexus & Lenovo 2 on bus 0.085535 0.001989
Co-located Galaxy Nexus & Nexus 5 on bus 0.084074 0.001923
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(b) The magnetometer’s spectrogram indicates there are repeated pat-
terns, visualised by the horizontal lines.

Figure 5: The spectrogram of the accelerometer and mag-
netometer traces in the taxi to investigate the repeated pat-
terns.

5.3 Experiment with the sensors trace on a car
tailing a bus
Another potential scenario is matching the sensor measurements
of two different users on a dissimilar mode of transport (a bus and
a car in this instance). For this experiment, one rode the bus, while
the other two tailing the bus in a car for a 20-minute journey.
Figure 8 revealed a highly similar shape of the bus accelerometer
trace, backed up by their DTW scores (see Table 6). Since the car
followed behind the bus in the traffic, we considered the trace lag
to be minimal (i.e. the impact of a speed bump on the bus was just
about 1 second ahead).

Table 6: The DTW scores between one accelerometer trace
on the bus and one in the car (lower number means more
similar).

Euclidean Kullback-Leibler

Samsung S4 & Nexus 9 in car 0.11469 0.0030534
:ixsnsung S4 in car & Samsung S8 on 0.12066 0.004992
Nexus 9 in car & Samsung S8 on bus 0.09675 0.0033772
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(a) The accelerometer traces on the bus. The Samsung S8, Lenovo 2 and
Nexus 5’s traces were shifted 2, 4 and 6 units vertically with respect to
the Galaxy Nexus’ trace for comparison purpose.
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(b) The magnetometer traces on the bus have very low spatial variation.
Note the unusual spike of one device was caused by the electric noise.

Figure 6: The sensor traces of four passengers riding on the
same bus for 25 minutes.

5.4 Experiment with the sensors trace on the
train

Compared to the last three experiments on the taxi and bus, trains
are operated by electricity, which has a major impact on the onboard
magnetic field.

For this experiment, four surveyors sat in different places through-
out the train for a 40-minute journey (see Figure 2c). A visual presen-
tation of the four accelerometer and magnetometer traces revealed
a similar shape (see Figure 9a), backed up by their DTW scores (see
Tables 7 and 8).

Table 7: The DTW scores between four accelerometer traces
on the train (lower number means more similar).

Euclidean Kullback-Leibler

Co-located Galaxy Nexus & Samsung

. 0.0757 0.0011091
S8 on train
Co—lo?ated Galaxy Nexus & Lenovo 2 0.03 0.00019595
on train
tCrc;;EJcated Galaxy Nexus & Nexus 5 on 0.0870 0.0014

However, the spectrogram of the accelerometer traces indicated
that there might be some repeated patterns, whereas the spectro-
gram of the magnetometer had no such indication (see Figure 10).
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(b) The magnetometer’s spectrogram indicates there are repeated pat-
terns, visualised by the horizontal lines.

Figure 7: The spectrogram of the accelerometer and magne-
tometer traces on the bus to investigate the repeated pat-
terns.
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Figure 8: The accelerometer traces of two phones in car tail-
ing another phone on a bus. The Nexus 9 and Samsung S8’s
traces were shifted 4 and 8 units vertically for the Samsung
S4’s trace for comparison purpose. The overall shape of the
whole journey is similar.

The reason was that trains often run at a constant speed in long
trips, and only accelerated at the beginning, and decelerated by the
end of the next stop.
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(a) The accelerometer traces on the train. The Samsung S8, Lenovo 2 and

Nexus 5’s traces were shifted 2, 4 and 6 units vertically with respect to

the Galaxy Nexus’ trace for comparison purpose.
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(b) The magnetometer traces on the train. The Samsung S8, Lenovo 2 and
Nexus 5’s traces were shifted 100, 200 and 300 units vertically with respect
to the Galaxy Nexus’ trace for comparison purpose.

Figure 9: The sensor traces of four passengers travelling on
the same train for 40 minutes.

Table 8: The DTW scores between four magnetometer traces
on the train (lower number means more similar). Note that
the magnetometer measures are on a different scale unit
than the accelerometer ones.

Euclidean Kullback-Leibler

Co-located Galaxy Nexus & Samsung

. 31.0739 14.7643
S8 on train
Co—loc.ated Galaxy Nexus & Lenovo 2 774%7 17670
on train
g:;rcated Galaxy Nexus & Nexus 5 on 14.4307 10.2470

5.5 Summary of the experimental results

In this part, we briefly summarise the results obtained in previ-
ous sections, addressing the research questions outlined in Sec-
tion 4. Firstly, the accelerometer traces of the passengers in the
same vehicle demonstrated promising similarity, through-out the
experiments on a taxi, bus, and train. Secondly, the accelerometer
measures showed a high spatial variation on taxis and buses, thanks
to the frequent accelerations, decelerations, and the uneven surface
of the roads (e.g. speed bumps). The accelerometer’s measures may
be applied to match passengers’ traces. However, since trains tend
to run at a constant speed during long journeys, the traces are not
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(a) The accelerometer’s spectrogram indicates there may be some re-
peated patterns, visualised by the horizontal lines, although they are not
perfectly clear.
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(b) The magnetometer’s spectrogram indicates there is no repeated pat-
terns.

Figure 10: The spectrogram of the accelerometer and magne-
tometer traces on the train to investigate the repeated pat-
terns.

as distinctive as those on taxi and bus. Thirdly, the magnetometer
measures were distinctive on the trains, but not on the taxis and
buses. The reasons were that the trains in London are powered by
electricity, and the rail-lines are made of metal composite materials,
which alter on the onboard magnetic field. In contrast, London
taxis and buses are petrol-based vehicles. The roads are also a mix-
ture of sand and cement which have no impact on the magnetic
field. Fourthly, we demonstrated the possibility of mimicking the
accelerometer trace on a bus, by tailing it in a car on the same
road in busy traffic. Finally, a summary of the sensors’ potential
usage for location tracking, drawn from the above experiments, is
outlined in Table 9.

Table 9: A summary of the potential usage of mobile sensors
for location tracking.

Difference in Difference in

magnetometer traces accelerometer traces

For Taxi Low High
For Bus Low High
For Train High Average

6 PRIVACY IMPLICATIONS AND POTENTIAL
WAY FORWARD

This section briefly discusses the implication of this work and po-
tential defence mechanism with their pros and cons.

6.1 Location Privacy and Mobile Sensors

In this paper, we have shown with field trials that non-location
sensitive mobile sensors can be used to track users over public
transport. Our results show that the existing techniques that limit
the sensor permission to perceived location sensitive sensors are
not effective. The results of this paper, along with the prior research
discussed in Section 2.2.1 provides clear evidence that sensors that
are perceived to have no privacy consequences like magnetometer
can, in fact, enable location tracking.

Location data is privacy-sensitive, and there is a number of reg-
ulations that enshrine user’s rights about location privacy. For
example, the US Congress Location Privacy Protection Act 2014.
Furthermore, with evolving regulation around the world like the
introduction of General Data Protection Regulation (GDPR) [2] will
require the management of data collected via sensors that are not
deemed privacy sensitive to be carefully considered. If an applica-
tion developer uses these sensors for legit reasons, they still have to
treat them as privacy sensitive information and under GDPR they
might be liable for hefty fines if they do not adequately protect this
information.

6.2 Potential Way Forward

One of the main position privacy campaigners have taken is the
concept of "choice and informed consent” about data collection
from individual users. This concept does not take into account:

e User awareness of technology, including the unintended
consequence of it.

o Complexity of length terms and conditions that normal users
will not read and issues with such a position.

e Lack of transparency about and control on privacy data -
after it is being collected.

For the unintended sensor access problem highlighted in this
paper, a potential countermeasure proposed based on choice and
informed consent include “Sensor Guardian" [1], which extends
the application permissions to traditionally considered non-privacy
sensitive sensors.

Normal users want flexibility, convenience and least among of
hassle to perform their tasks, asking for additional permission at
regular intervals has the potential of desensitising them [6]. A
potential solution can be towards behaviour analysis of the appli-
cations that are accessing sensor data. If an application is accessing
data often and for longer periods of time, the application may be
tracking the user.

7 CONCLUSION

This paper put forward a proposition that users can be location
tracked over public transport using non-location sensitive sen-
sors to high accuracy. To empirically support this statement, we
developed a low footprint mobile application for data collection
and an efficient analysis framework. We collected sensor data for
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accelerometer and magnetometer over four different settings - rang-
ing on different public transport mechanisms including taxi, bus,
and train. The results of our experiments showed that a user could
be accurately tracked over the public transport network. Further-
more, we stipulated that the standard option of choice and informed
consent might not be a preferable solution. To conclude as future
research, we will investigate the behaviour based sensor privacy
guard that can prevent sensor data access if an application is be-
having as such that it is tracking a user via non-location sensors.

REFERENCES

[1] Xiaolong Bai, Jie Yin, and Yu-Ping Wang. 2017. Sensor Guardian: prevent privacy
inference on Android sensors. EURASIP Journal on Information Security 2017, 1
(08 Jun 2017), 10. https://doi.org/10.1186/s13635-017-0061-8

[2] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official Journal of the European
Union L119 (4 May 2016), 1-88.

[3] Gerald Friedland and Robin Sommer. 2010. Cybercasing the Joint: On the Privacy
Implications of Geo-tagging. In Proceedings of the 5th USENIX Conference on Hot
Topics in Security (HotSec’10). 1-8.

[4] Tzipora Halevi, Di Ma, Nitesh Saxena, and Tuo Xiang. 2012. Secure Proximity
Detection for NFC Devices Based on Ambient Sensor Data. In Computer Security
— ESORICS 2012, Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.). 379-396.
https://doi.org/10.1007/978-3-642-33167-1_22

Balachander Krishnamurthy and Craig E. Wills. 2010. Privacy Leakage in Mobile
Online Social Networks. In Proceedings of the 3rd Wonference on Online Social
Networks (WOSN’10). 4-4.

Kat Krol, Matthew Moroz, and M Angela Sasse. 2012. Don’t work. Can’t work?
Why it’s time to rethink security warnings. In risk and security of internet and
systems (CRiSIS), 2012 7th International conference on. 1-8.

Hai Liang, Fei Shen, and King-wa Fu. 2017. Privacy protection and self-disclosure
across societies: A study of global Twitter users. new media & society 19, 9 (2017),
1476-1497.

Meinard Miiller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69-84.

Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and Guevara Noubir. 2016.
Inferring User Routes and Locations Using Zero-Permission Mobile Sensors.. In
IEEE Symposium on Security and Privacy. 397-413.

Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg,
Dan Boneh, et al. 2011. Location Privacy via Private Proximity Testing.. In NDSS.

Sarfraz Nawaz and Cecilia Mascolo. 2014. Mining users’ significant driving routes
with low-power sensors. In Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems. 236-250.

Babins Shrestha, Nitesh Saxena, Hien Thi Thu Truong, and N Asokan. 2014.
Drone to the rescue: Relay-resilient authentication using ambient multi-sensing.
In International Conference on Financial Cryptography and Data Security. Springer,
349-364.

Hien Thi Thu Truong, Xiang Gao, Biva Shrestha, Navrati Saxena, N Asokan,
and Petteri Nurmi. 2014. Comparing and Fusing Different Sensor Modalities
for Relay Attack Resistance in Zero-Interaction Authentication. In Pervasive
Computing and Communications (PerCom), 2014 IEEE International Conference on.
IEEE, 163-171.

William WS Wei. 2006. Time series analysis. In The Oxford Handbook of Quanti-
tative Methods in Psychology: Vol. 2.


https://doi.org/10.1186/s13635-017-0061-8
https://doi.org/10.1007/978-3-642-33167-1_22

	Abstract
	1 Introduction
	1.1 Paper's Contributions

	2 Mobile Sensors and Location Privacy
	2.1 Mobile Sensor Access Privilege
	2.2 Prior Work in Location Tracking and Proximity Detection

	3 Experimental Testbed Development
	3.1 Test devices
	3.2 Test environments
	3.3 Sensor Data Collection
	3.4 Data Processing Platform

	4 Research questions
	5 Empirical experiments
	5.1 Experiment with the sensors trace in the taxi
	5.2 Experiment with the sensors trace on the bus
	5.3 Experiment with the sensors trace on a car tailing a bus
	5.4 Experiment with the sensors trace on the train
	5.5 Summary of the experimental results

	6 Privacy Implications and Potential Way Forward
	6.1 Location Privacy and Mobile Sensors
	6.2 Potential Way Forward

	7 Conclusion
	References

