
1

EMV (Chip and PIN) Project

Student: Khuong An Nguyen

Supervisor: Professor Chris Mitchell

Year: 2009-2010

Full Unit Project

EMV card

2

Contents
Figures ... 6

Tables .. 7

1. Introduction .. 8

1.1 Electronic payment ... 8

1.2 Scope of project .. 8

1.3 Contents of report .. 8

2. Definitions and abbreviations .. 11

2.1 Definitions .. 11

2.2 Abbreviations .. 12

3. Project overview ... 14

3.1 Project nature ... 14

3.2 Project components ... 14

3.2.1 Software system .. 15

3.2.2 Smart card reader .. 15

3.2.3 EMV Credit/Debit card .. 16

3.2.4 Supporting software and hardware .. 16

3.3 Project objectives ... 16

3.4 Project development plan .. 17

4. Background ... 18

4.1 EMV (Chip and PIN) introduction ... 18

4.1.1 Smart card introduction .. 18

4.1.2 EMV (Chip and PIN) introduction .. 19

4.2 File system structure overview ... 21

4.2.1 General smart card file system overview .. 21

4.2.2 EMV file system overview ... 21

4.3 EMV payment transaction .. 22

4.4 Payment transaction protection mechanism ... 23

4.4.1 Card Authentication Methods ... 24

4.4.2 Cardholder Verification Methods .. 24

4.4.3 Plaintext offline PIN verification .. 26

5. Command analysis .. 29

5.1 Application Protocol Data Unit ... 29

3

5.1.1 Command APDU .. 29

5.1.2 Response APDU ... 29

5.2 EMV commands .. 30

5.2.1 SELECT command .. 30

5.2.2 READ RECORD command ... 31

5.2.3 GET DATA command .. 32

5.2.4 VERIFY command ... 32

5.2.5 GET PROCESSING OPTIONS command .. 33

5.3 Response command analysis .. 33

5.3.1 Payment application R-APDU analysis ... 33

5.3.2 GET PROCESSING OPTIONS R-APDU analysis .. 34

5.3.3 Cardholder verification R-APDU analysis ... 35

5.3.4 Personalised information R-APDU analysis ... 36

6. EMV communication protocol construction .. 37

6.1 Approach discussion ... 37

6.2 Protocol algorithm .. 37

7. High level design ... 40

7.1 System functionalities overview ... 40

7.2 General system architecture .. 41

7.3 Hardware architecture ... 41

7.4 Software system architecture .. 42

7.5 Sequence diagram .. 42

7.6 User Interface ... 43

7.6.1 Card input interface ... 43

7.6.2 Payment application interface .. 44

7.6.3 Card authentication interface ... 44

7.6.4 Cardholder verification interface .. 45

7.6.5 Personalised information interface ... 45

7.6.6 Offline PIN verification interface ... 46

8. Detailed design ... 47

8.1 Java programming .. 47

8.2 Classes specification ... 47

8.2.1 Card input class .. 47

4

8.2.2 Payment application class ... 49

8.2.3 Transaction initialisation class ... 51

8.2.4 Security protection class .. 52

8.2.5 Card authentication class .. 53

8.2.6 Cardholder verification class ... 55

8.2.7 Plaintext offline PIN verification .. 58

8.2.8 Personalised information class .. 60

8.2.9 Report generation class ... 61

8.2.10 Graphical User Interface class .. 64

8.3 Data dictionary ... 65

8.4 Java algorithm... 65

9. Software Testing ... 67

9.1 Black box testing ... 68

9.2 White box testing ... 75

9.3 Integration testing .. 80

9.4 System testing .. 84

9.5 System testing failures analysis .. 88

10. Experimental results ... 89

10.1 NatWest card survey .. 89

10.2 HSBC card survey .. 91

10.3 Abbey (Santander) card survey .. 93

10.4 Barclays card survey ... 95

10.5 Thai Bank of Ayudhya card survey.. 96

10.6 Vietnam Vietcombank card survey... 98

10.7 Survey analysis .. 99

11. Conclusion and future work ... 101

11.1 Project self-evaluation .. 101

11.2 Project difficulties and solutions .. 102

11.2.1 Requirements analysis stage ... 102

11.2.2 Research stage ... 102

11.2.3 Modelling stage ... 103

11.2.4 Coding stage .. 103

11.2.5 Testing stage .. 103

5

11.2.6 Documenting stage .. 103

11.3 Experience gained .. 104

11.4 Future work .. 104

Appendix A: Software manual ... 105

Appendix B: Full source code listing .. 108

Appendix C: CRC cards .. 163

References and Bibliography ... 165

6

Figures
Figure 1: Project system components 14

Figure 2: Software system overview 15

Figure 3: Smart card reader used in this project 15

Figure 4: NatWest EMV MasterCard 16

Figure 5: Magnetic stripe reader used in this project 16

Figure 6: Smart card life cycle 18

Figure 7: ICC contact surface 19

Figure 8: Chip and PIN logo 19

Figure 9: Transaction with ‘Chip and PIN’ card 20

Figure 10: ADF tree structure 22

Figure 11: DDF tree structure 22

Figure 12: CAMs and CVMs during payment transaction 23

Figure 13: PIN verification during transaction 27

Figure 14: EMV file system example 39

Figure 15: General system architecture 41

Figure 16: Smart card reader contact surface 41

Figure 17: Software system architecture 42

Figure 18: Session sequence diagram 43

Figure 19: Software main interface 43

Figure 20: Payment application interface 44

Figure 21: Card authentication interface 44

Figure 22: Cardholder verification interface 45

Figure 23: Personalised information interface 45

Figure 24: Offline PIN verification interface 46

Figure 25: Graphical User Interface class 64

7

Tables

Table 1: CVM list 25

Table 2: PIN block format 28

Table 3: C-APDU command structure 29
Table 4: R-APDU command structure 29

Table 5: SELECT command parameter 31

Table 6: READ RECORD command parameter 32

Table 7: Card input class 47

Table 8: Payment application class 49

Table 9: Transaction initialisation class 51

Table 10: Security protection class 52

Table 11: Card authentication class 53

Table 12: Cardholder verification class 55

Table 13: Plaintext offline PIN verification class 58

Table 14: Personalised information class 60

Table 15: Report generation class 61

8

 1. Introduction

This chapter explains the motivation for this project. Initially, an introduction about

electronic payment is looked at, as it is the basic concept the project is built on. Then, the

scope of the project is reviewed and the chapter concludes by outlining eleven further

chapters to be discussed later on, along with each chapter’s general ideas.

1.1 Electronic payment

Electronic payment is now widely used across the globe as a new means of replacing old

cash payment. Not only does electronic payment offer better security protection for

transactions, but it also introduces a new concept of a payment system which allows

merchants to personalise the financial environment. However, along with the

introduction of an electronic payment system, criminals have adapted themselves to

exploit the weaknesses of those systems. Information in magnetic stripe cards has been

easily duplicated, cards forged without much effort. Thus, a new level of security for

electronic payment was demanded which brought to attention the invention of the EMV

standard. EMV has been implemented to enhance stronger protection for electronic

payment transactions, introducing new combinations of hardware protection, as well as a

sophisticated software mechanism to guarantee tamper-free resistance for credit and

debit cards.

1.2 Scope of project

This project was designed to study the technologies inside EMV, and learn how EMV is

implemented in real life. The project is concluded by the creation of the software reader

which is capable of accessing and analysing information obtained from an actual EMV

card. This project report is systematically organised into eleven chapters, which clearly

reflects the development process of the project, from learning and understanding the

smart card and EMV theories into implementing these as the software application,

documentation reports and further testing procedures.

1.3 Contents of report

Chapter 1: Introduction

This chapter provides motivation for this project, outlines the seven chapters to be

discussed further on, along with each chapter’s general ideas. The introduction serves as

a guideline to refer to when developing software.

Chapter 2: Definitions and abbreviations

This section explains all technical terms and abbreviations used in this project report in

alphabetical order.

Chapter 3: Project overview

This chapter gives a complete understanding of the nature of the project. While it does

not provide any technical discussion, the chapter is written to deliver readers a general

9

outlook at the whole project, introduces each project components and confirms the

objectives to be achieved at the end. Further discussions behind the project components

including architecture design and technical design are detailed in chapter 7 and chapter

8.

Chapter 4: Background

This chapter collates all relevant background material needed for this project, including a

brief introduction about smart card, EMV standard, ‘Chip and PIN’ implementation, as

well as a thorough discussion about the system entities and project objectives to be

achieved. After a swift overview of the main concepts, a detailed description of internal

structure of EMV is mentioned, concentrating on how EMV organises its file system

structure as this is crucial for EMV software development. This project takes a closer look

at how to initiate a payment transaction. Two protection mechanisms are taken into

account including Card Authentication Methods to prove that the presented card is

authentic and Cardholder Verification Methods to prove that the customer is genuine.

Chapter 5: Command analysis

This chapter outlines and explains all APDU commands used to communicate between

software system and ICC. Initially, an introduction about APDU is discussed, outlining two

different APDU commands. The chapter continues by looking at each C-APDU commands

used in this project and the steps to construct them. A comprehensive analysis of R-APDU

information concludes the chapter.

Chapter 6: EMV communication protocol construction

This chapter describes how to construct a communication protocol used to select the

payment application. Initially, a theoretical approach is discussed. The solution is largely

based on knowledge obtained from organisation of EMV file system discussed in chapter

4. The chapter is concluded by the display of algorithm showing construction steps.

Chapter 7: High level design

From a high-level user perspective, all software functionalities are described in detailed,

including how they share information and interact with each other.

Chapter 8: Detailed design

This chapter takes a closer look at low level design, showing how each software

functionality and software class is implemented in Java style pseudo codes.

Chapter 9: Software testing

When the software is finished and first prototype is produced, a detailed testing plan is

scheduled. This plan includes stress testing to ensure the software is working correctly

and is operating as intended. Three testing cases are Black-box testing, White-box testing

and Integration Testing. For each test case, a variety of circumstances and data are input,

10

all results are carefully logged and documented. In the case of testing failure, each case is

examined, the codes are amended and tests are re-applied

Chapter 10: Experimental results

After software quality is verified, a detailed document report is produced based on

results of applying software in real life EMV cards. This document is intended for

reference purposes only, therefore some parts of sensitive personal information are

hidden. There are four reports obtained from testing UK Chip and PIN NatWest debit

card, HSBC debit card, Abbey (Santander) MasterCard and Barclays VISA card, as well as

two international cards from Thailand and Vietnam. Each report is carefully documented

and compared. This chapter aims to produce a real life perspective when applying the

project and also underpins the results obtained to match theoretical expectation.

Chapter 11: Conclusion and future work

Finally, a summary report is produced to conclude the project. This report is intended by

the project writer to summarise what he learned when doing this project. A possible

future work plan is included to keep track of what should be implemented in the near

future. Rather than repeating what the project does, this chapter serves as an individual

summary of work in which the project writer expresses personal experiences when

conducting this project, covering both technical and non-technical difficulties and

solutions.

Appendix A: Software manual

This appendix aims to provide the software user with a complete guide detailing software

operations, regardless of technical ability. All instructions are written simply to aid users

when running the software with trouble-free.

Appendix B: Full source code listing

This appendix lists all source codes written in Java language. The codes are organised into

different classes. Each class performs a particular function. There is a main class

integrating all other classes to form a complete programme. For simplicity, all

programming comments are removed to keep the codes tidy.

Appendix C: CRC cards

This appendix includes all original Class Responsibility Collaborator cards (CRC cards)

produced handwritten from scratch when the high level of the software system was

designed. The purpose of those CRC cards was to provide the software writer a useful

approach to design an object-oriented system. They sketch all basic functionalities of

each class and the relationship amongst those classes.

Bibliography: This section lists all references used when this project was carried out

including internet sources, books and slides in their natural orders.

11

 2. Definitions and abbreviations

2.1 Definitions

Byte byte is the unit used to measured data information in

computer. One byte contains exactly eight bits

Command a message sent from terminal to ICC and from ICC back to

terminal

Compromise when a system has been compromised, it can no longer be

trusted as the security system does not work properly as

when functioning normally

Certification Authority a trusted third party who binds a user’s identity to a public

key by issuing a digital certification

Digital signature asymmetric cryptography application, which allows receivers

to check the integrity of the message, ensures that

information is authentic

Issuing bank the bank which issues a credit/debit card to provide their

services to the customers

Magnetic stripe the black line at the back of a credit and debit card.

Encrypted Information is stored within three tracks

Padding adding some bits at the end of data to increase the length of

data to expected length

PIN pad device allowing customer to enter their PIN physically. It

provides ten digit button from zero to nine, along with some

necessary buttons such as ENTER, CLEAR, CANCEL

Plaintext a normal unencrypted text in ASCII format

Payment transaction the process when money is debited from a customer account

who wants to buy goods, services ... and debited money is

credited back to merchant account. Before the transaction

happens, some security checks are applied to protect the

seller and buyer

RSA stands for Rivest-Shamir-Adleman, this is a cryptosystem

involving a pair of public key and private key

Tag an identification in hexadecimal form to represent a

particular data object in smart card

12

Terminal a combination of both reader device to exchange data with

ICC and the software reader to process exchanged

information

Track 2 the second flow of information on magnetic stripe card

Unattended terminal a type of electronic merchant terminal which works through

cardholder and does not need attendance by card issuer

representative

2.2 Abbreviations

ADF Application Definition File

AEF Application Elementary File

AFL Application File Locator

AID Application Identifier

AIP Application Interchange Profile

APDU Application Protocol Data Unit

ATR Answer to Reset, a sequence returned when ICC is reset

CAM Card Authentication Methods

CDA Combined DDA/Application Cryptogram Generation

CVM Cardholder Verification Methods

C-APDU Command Application Protocol Data Unit, this command is sent by

Terminal to smart card

DDA Dynamic Data Authentication

DF Dedicated File

EF Elementary File

FCI File Control Information

ICC Integrated Circuit Card, this is another technical name for smart card

ISO International Organisation for Standardisation, this is an international

recognised set of rules in which many applications conform

MF Master File, this is a special DF located at top of EMV tree

PCI Payment Card Industry, this is a standard involving all payment

entities in card industry such as Credit card, Debit card, ATM, POS

PDOL Processing Options Data Object List

POS Point of Service, this implies ATM, Cashpoint

PIN Personal Identification Number, this is a four-digit number used to

identify cardholder during electronic payment transaction

PSE Payment System Environment, a folder grouping all payment

applications in EMV

R-APDU Response Application Protocol Data Unit, this is the command

returned by smart card in response to C-APDU

RFU Reserved for Future Use, this term is used to refer to the bits which

are currently unallocated in specification and intended to be

modified in the future

13

SDA Static Data Authentication, an offline authentication method

SFI Short File Identifier

SW1 Status Byte 1, this is part of R-APDU which shows the status of C-

APDU

SW2 Status Byte 2, this is part of R-APDU which shows the status of C-

APDU

TLV Tag Length Value

14

3. Project overview

This chapter is dedicated to give a complete understanding about the nature of this

project with no specific technical discussion, to provide inspectors a better top-down

overview. Initially, a brief introduction about the project nature from the project writer’s

point of view is discussed. Then, three components making up the project are introduced,

along with their roles in the system. More details about those components are explained

in the high level design chapter. As the project makes use of supporting hardware and

software, they are introduced in the subsequent section. At the end of the chapter, a list

of all project objectives is outlined to confirm which aspects of EMV are to be addressed

in this project.

3.1 Project nature

This project is the combination of hardware and software aspects. Since the hardware

involved in this project is pre-made, and can be easily bought in the market, all

discussions are focused on how to make it function and combine it with the software

system, rather than the internal structure of the hardware. Furthermore, because of the

nature of a theoretical analysis project, there will be many discussions on how to analyse

data obtained from a smart card, as well as details on how to construct communication

commands in this report.

3.2 Project components

Figure 1: Project system components

There are three main parties involved in the project, as seen in figure 1. After being

inserted into a ‘smart card reader’, the EMV card communicates indirectly with ‘software

system’ using the facility provided by the reader device. The role of the smart card reader

is restricted as a messenger who relentlessly sends and receives messages between EMV

card and the software system. Software system, on the other hand, sends requests to

EMV card, receives and analyses response messages. From the industry’s point of view,

‘smart card reader’ and ‘software system’ form the merchant terminal side, while EMV

card alone forms ICC side. Furthermore, aiding to the development of the project, there

are supporting software and hardware, which do not participate in the complete system,

yet provide support to verify system’s reliability, and proving theoretical correctness.

EMV card

Smart card reader Software system

exchanges commands

15

3.2.1 Software system

This project uses PC/SC (Personal Computer/Smart Card) framework which provides the

computers ability to communicate with smart card and smart card readers on a Windows

platform. ‘Windows Smartcard Resource Manager’ comes with all Windows versions

since Windows 2000. It allows any PC/SC compliant reader device to work immediately

after plugging-in without the need for driver installation.

Software reader is written in Java language, utilising a set of Java API provided by JACCAL.

JACCAL reads all PC/SC APIs and translates them to work under Java environment.

Figure 2 incorporates all elements of software system. This software system serves as

‘software part’ of terminal side.

Figure 2: Software system overview

3.2.2 Smart card reader

The reader device is a piece of hardware equipped with contact surface to exchange

signals with ICC. The device tested in this project is Gemplus manufactured by Gemalto

company as seen in figure 3, which is also PC/SC workgroup member. However, any

PC/SC compliant smart card reader will work.

This reader device serves as ‘hardware part’ of terminal side.

Figure 3: Smart card reader used in this project

Computer running Windows OS

Software system

PC/SC framework

Smart card

resource manager

Java API

16

3.2.3 EMV Credit/Debit card

EMV Card is the object which possesses information that the software reader needed to

obtain and analyse. Figure 4 shows such an EMV card. In this project scope, EMV Card is

rather an independent token, which cannot be modified by outside factors. However, it

can react to suspicious interactions, protect itself in critical circumstances such as

blocking access to sensitive information when being attacked. It also responds to

challenges to verify and authenticate genuine users.

Figure 4: NatWest EMV MasterCard

This is only a sample card, the picture is officially licensed by National Westminster at

www.natwest.com

3.2.4 Supporting software and hardware

This project uses MSR206 magnetic stripe reader to read information from magnetic

stripe surface at the back of an EMV card to compare with duplicated track 2 information

in the Chip. The picture of the device is captured in figure 5.

Figure 5: Magnetic stripe reader used in this project

The software used to read information from magnetic stripe card is MSR206DEMO

provided along with the device.

3.3 Project objectives

There are six main purposes of this project to be achieved

 Understanding how merchant terminal communicates with ICC.

http://www.natwest.com/

17

 A protocol of communication between EMV card and software system.

 Overview of CAMs and CVMs including descriptions, functionalities and their

roles in electronic payment transaction.

 Analysis of information retrieved from EMV Chip and PIN card.

 Process of plaintext offline PIN verification.

 Development of software implementing theories listed above.

3.4 Project development plan

In terms of software development, the waterfall model is used to develop this project.

The development process is divided into the six following stages:

1) Requirements analysis

At this earliest stage, all project requirements are carefully analysed to make sure all

details are fully understood correctly. A quick draft of software, hardware, and

solution ideas is constructed to help the project writer imagine further about the

requirements. All early difficulties about project requirements are thoroughly

discussed with project supervisor before the actual project is continued.

2) Research

Relevant information about EMV, card authentication, cardholder verification and

PIN verification is collected from different sources of books, Internet and articles. The

aim of this stage is to identify what has been done before and what already existed,

which helps create a background chapter and decides whether the project will

develop independent functionalities or enhance existing features. A log of this stage

is reflected by the bibliography at the end of this report.

3) Modelling

Based on all collated theories, a high level design of the system is built, concentrating

on showing the users what main functionalities the system provides. This stage is

reflected in the high level design chapter.

4) Coding

Based on the outlined modelling of the system, all functionalities of the system are

implemented in Java environment. This stage is carefully discussed in the detailed

design chapter.

5) Testing

This stage outlines three separate testing procedures including black box testing,

white box testing, integration testing and system testing, used to verify the

completeness of the first prototype of the system. This stage maintains a list of bugs,

and showing how well the developer is removing them. A detailed testing plan is

discussed in the software testing chapter.

6) Documenting

This is the final stage to summarise the project. A report is produced to collate all

aspects of the project.

18

4. Background

This chapter describes in detail the theories behind this project. It begins with an

overview of EMV – the main concept studied in this project. The ‘Chip and PIN’

implementation of EMV in the United Kingdom, along with advantages and security

issues are discussed. This chapter carries on with an insight introduction about EMV file

system organisation as this is the only means for the outside world to communicate with

ICC. The format which a general smart card uses to organise its file system will be looked

at first, as EMV adapts a similar style. Having good background about EMV structure

forms the next section about EMV transaction. The chapter is continued with the

introduction of two important EMV protection mechanisms – Card Authentication

Methods and Cardholder Verification Methods. An overview of both processes is

explained, including an introduction for each method. The chapter is concluded by a good

description and guideline to apply plaintext offline PIN verification in a real life EMV card.

4.1 EMV (Chip and PIN) introduction

This part provides an introduction about smart card, ISO 7816 and EMV (Chip and PIN)

standards. Some disadvantages and security plots are also discussed. The purpose of this

section is to outline the key features of the popular concepts related to this project,

including smart card and EMV to be used further on as the project is developed.

4.1.1 Smart card introduction

Smart card is a plastic card which has the size of a credit card or the size of a mobile

phone SIM card (cut-down smart card) used in the United Kingdom, Europe and many

countries in the world. Smart card is also known as Chip card or integrated circuit card

(ICC). Smart card has been widely accepted as a replacement for old magnetic stripe card.

The major security threat of un-secured static data used by magnetic stripe card is that

they can be easily accessed and duplicated. This has been fully addressed through the

introduction of a microprocessor inside the smart card. Sensitive personal information is

securely protected by the Chip and the internal structure of smart card is not public, thus

making it very hard to forge. With the ability to perform calculation, microchip also offers

cryptographic functions (RSA, DES, Triple-DES) which significantly help the fight against

fraudsters. Figure 6 describes the lifecycle of smart card from the manufacturing stage.

 Card is forged at factory Bank implements Card is initialised with personal

 policy, PIN, certificates ... information and ready to use

Figure 6: Smart card life cycle

There are two types of smart card: Contact card and Contactless card

 Contact card must be inserted into a reader. Communication is performed via

eight contact points on ICC (this is sketched in Figure 7). Reader device supplies

needed power for operation.

Smart card manufacturing Smart card issuing Smart card personalising

19

 Contactless card does not require a reader. Communication is performed through

an antenna in the card. Power is supplied from battery inside ICC.

Figure 7: ICC contact surface

4.1.2 EMV (Chip and PIN) introduction

ISO 7816 standard defines properties and physical appearance of every smart card. ISO

7816-4 specifies smart card organisation and six basic commands used for

communication. EMV (Europay, MasterCard & VISA) standard is based on ISO 7816. EMV

is produced by three companies; Europay, MasterCard and VISA. It defines the logical and

physical interface between the merchant terminal and payment smartcard. However,

EMV standard is enhanced with security protections for the electronic payment system.

EMV cards are Contact card. The first EMV Contactless card has been recently introduced.

In the United Kingdom, the implementation of EMV standard is known as ‘Chip and PIN’.

Figure 8 shows the ‘Chip and PIN’ logo, widely seen in the United Kingdom. The term

‘Chip and PIN’ is a combination of two discrete objects: ‘Chip’ and ‘PIN’

 ‘Chip’ is the microprocessor inside smart card (this is discussed in chapter 4.1.1).

Chip stores and protects information in internal memory. During a transaction,

Chip proves that exchanged information is correct, and presented card is

authentic

 ‘PIN’ (Personal Identification Number) is a four digit number that is known only

by the cardholder. During an electronic transaction, PIN is physically entered by

the customer using a PIN pad to prove that customer is indeed the genuine

cardholder. The PIN pad used at Point of Service must qualify PCI standard

(Payment Card Industry) which guarantees the confidentiality of a PIN during

payment transaction. PIN is also securely stored and well-protected inside the

Chip.

Figure 8: Chip and PIN logo

This logo is officially licensed by Chip and PIN UK at www.chipandpin.co.uk

Power

Reset

Check

Ground

Optional

I/O

Optional

http://www.chipandpin.co.uk/

20

Since ‘Chip and PIN’ was introduced in the United Kingdom, fraudulent transactions have

significantly decreased which underlines one of the biggest advantages of switching from

magnetic stripe card to ‘Chip and PIN’ card. However, there are other benefits to be

noted:

 ‘Chip and PIN’ eliminates the need for a customer signature at Point of Service.

 ‘Chip and PIN’ provides a flexible electronic payment environment. Smart card

issuers can write their own payment applications.

 ‘Chip and PIN’ decreases transaction processing time, allowing card

authentication and card verification to be done online or offline.

The following diagram describes how a transaction is performed with Chip and PIN card,

emphasising the role of PIN in the process:

Figure 9: Transaction with ‘Chip and PIN’ card

Customer inserts his card into Terminal

Terminal selects correct Payment

Application to begin transaction

Card Authentication Method and

Cardholder Verification Method are

applied

Terminal asks for PIN and Customer

inputs PIN with PIN pad

Transaction is

carried on

If PIN is not correct

If PIN is correct

Card is ejected and

returned to Customer

After three wrong PIN

attempts

This process is described in chapter 4.3

This process is described in chapter 4.4

This process is described in chapter 4.4.3

21

 4.2 File system structure overview

This section provides an insight description into EMV, and concentrates on how EMV

organises its file structure. Firstly, it would be easier to discuss the file system of general

smart card, since EMV adapts a similar type of file system from ISO 7816-4. Each file

system type along with access type is discussed. The purpose of this part is to detail

sufficiently the internal structure of EMV background for protocol implementation in the

next section.

4.2.1 General smart card file system overview

According to ISO 7816-4 standard, ICC organises its file system structure into two types:

DF (Dedicated file) and EF (Elementary file). The whole system structure is viewed as a

Tree. The root of the tree is a DF called Master File (MF).

DF can be seen as a folder. It stores one or many EFs, even other sub-DFs. Access Control

can be implemented onto DF to prevent access to inside applications.

There are two ways for Terminal to access a DF -

 using FID (2 bytes Fixed File Identifier): Terminal must know the file system

structure of ICC beforehand.

 using AID (16 bytes Application ID): Terminal does not need to know whole file

system structure of ICC in advance.

This project uses AID option since terminal does not know the file structure inside ICC.

FID is suitable for banks to implement their ATMs as they are also card issuers.

EF stores Card Application information. Each EF can contain other sub-EFs. However, EF

cannot contain any DF.

There are two EF types -

 Internal EFs: this EF type is used exclusively by ICC and cannot be interfered by

Terminal. They store sensitive information such as cryptographic function, PIN, ...

 Working EFs: this EF type can be accessed by Terminal.

There are two ways to access an EF -

 using FID: exactly same as the DF. Terminal must know whole ICC file system

structure beforehand.

 using SFI (Short File Identifier): 5 bits number from 1 to 30. EF can be accessed

indirectly using SFI without selecting DF which contains it initially.

4.2.2 EMV file system overview

EMV adapts ISO 7816-4 standard, thus it is compatible with ISO 7816-4 file system

structure. There are three EMV file systems types -

 ADF: Application Definition File, this file type is adapted from DF.

 DDF: Directory Definition File, this file type is adapted from DF.

22

 AEF: Application Elementary File, this file type is adapted from EF.

Each ADF or DDF has a table of contents which stores information about that folder such

as Entry Point. This table of contents is called AFL (Application File Locator).

ADF can contain many AEFs, but ADF cannot contain other DDFs. A branch of ADF tree

can be seen in Figure 10. Each ADF has a unique AID as index and can be accessed with

this AID. AEF can also be accessed with SFI. SFI is just an index number from 1 to 30. AEFs

with similarities are grouped into one ADF. For example, all applications stored inside PSE

are payment related system applications.

Figure 10: ADF tree structure

DDF can contain many ADFs. Each DDF has a unique AID as index and can be accessed

with this AID. DDF can also contain other DDFs. A branch of DDF tree can be viewed in

Figure 11. Each DDF maintains a list of all AIDs of other sub DDFs and ADFs inside this

DDF.

Figure 11: DDF tree structure

All EMV applications are stored in one DDF folder. This folder has AID ‘1PAY.SYS.DDF01’

and is called Payment System Environment (PSE).

 4.3 EMV payment transaction

An EMV payment transaction needs to be initialised between merchant terminal and ICC,

so that information can be exchanged. Terminal is the active entity to request a

transaction creation. It sends a list of special instructions about the business environment

and terminal restriction so ICC can review before agreeing to proceed with the

transaction. Upon request, ICC will review those conditions and sends back a message for

the transaction to go ahead. An agreement must be made between these two entities for

transaction creation. There are two ways a transaction can be formed -

ADF

AEF1 AEF2 AEFn DDF

DDF

........ DDF1 DDF2 DDFn ADF1 ADF2 ADFn

23

 Standard way: terminal does not specify any business instruction. In this case, ICC

will set up the transaction in default.

 Personalised environment: terminal sends a list of business instructions which ICC

adapts to set up a correct EMV transaction. The list can contain information

about language environment and terminal restrictions.

Those special instructions are encapsulated in a data object called Processing Options

Data Object List (PDOL). The structure of PDOL is as followed:

 PDOL begins with tag 9F 38

 Terminal type is 9F 35

 Terminal capabilities is 9F 33

 Terminal country code is 9F 1A

 Merchant category code is 9F 15

 The data field begins with tag 83

4.4 Payment transaction protection mechanism

To increase payment transaction security, EMV provides two protection mechanisms:

Card Authentication Methods (CAMs) and Cardholder Verification Methods (CVMs).

Figure 12: CAMs and CVMs during payment transaction

Terminal initialises an EMV transaction

ICC acknowledges the EMV transaction

Terminal decides transaction will

be done online or offline, based on

decision of card authentication and

cardholder verification

Terminal connects to

Issuer’s network

All authentications

are done by Issuer

Terminal authenticates

and verifies data

Transaction is either

successful or failed

Online

Offline

24

Figure 12 demonstrates the role of card authentication and cardholder verification which

affects the decision of terminal during payment transaction. While CAMs makes sure that

the presented card at merchant terminal is authentic, CVMs guarantees the customer in

possession of the card is the genuine holder. This section shows how to identify which

CAM and CVM the EMV supports, as well as their roles in the process.

4.4.1 Card Authentication Methods

There are two Card Authentication Methods (CAMs) types: offline CAM and online CAM.

Online CAM requires Internet or phone connection, thus does not require much work

from either terminal or ICC. ICC does not store needed information for authentication,

encryption processes. All authentications are done in Issuer’s online network. Offline

CAM does not require online connection, but terminal has to do all authentication

processes. In the scope of this project, we only consider offline CAM. There are two types

of offline CAM, both based on digital signature -

 Offline static CAM (SDA): With this CAM, only terminal performs cryptographic

operations.

 Offline dynamic CAM (DDA): With this CAM, both terminal and ICC perform

cryptographic operations.

There are five elements in ICC which supports offline static CAM -

- Issuer Public Key Certificate (tag 90): this is issued by CA.

- Certification Authority Public Key Index (tag 8F): Index of Issuer Public Key Certificate.

- Issuer Public Key Exponent (tag 9F32).

- Issuer Public Key Remainder (tag 92).

- Signed Static Application Data (tag 93).

There are eight elements in ICC which supports offline dynamic CAM

- ICC Public Key Certificate (tag 9F46).

- ICC Public Key Exponent (tag 9F47).

- ICC Public Key Remainder (tag 9F48).

- Issuer Public Key Certificate (tag 90): this is issued by CA.

- Certification Authority Public Key Index (tag 8F): this is the Index of Issuer Public Key

Certificate.

- Issuer Public Key Exponent (tag 9F32).

- Issuer Public Key Remainder (tag 92).

4.4.2 Cardholder Verification Methods

Cardholder verification process makes sure that the person doing payment transaction is

indeed the genuine cardholder. In order for the process to carry on, ICC must support at

least one Cardholder Verification Method (CVM). ICC’s CVM can be found by analysing

AIP (Application Interchange Profile).

25

There are eight types of CVMs

 No CVM required: if card suggests this method, it simply does not matter if the

person presenting the card is the real owner. The obvious advantage of this

method is the fluency of transaction.

 Online Enciphered PIN verification: a PIN is needed from user. Terminal encrypts

this PIN with symmetric encryption before sending it to issuer’s network for

verification.

 Enciphered offline PIN verification: a PIN is required from user. Terminal encrypts

this PIN with RSA and sends to ICC. Chip must be able to perform RSA operations.

It decrypts PIN and compares with the reference one in the internal memory.

 Plaintext offline PIN verification: a PIN is needed from user. However, it is sent

straight to ICC without any encryption. ICC compares reference PIN stored in

internal memory with user PIN.

 Signature verification: this method prompts cardholder to provide a paper

signature, which must match the one on the back of the card. This method

requires a human to witness the verification.

 Plaintext offline PIN verification and signature verification: this method is simply a

combination of plaintext offline PIN verification and signature verification.

 Enciphered offline PIN verification and signature verification: this method is a

combination of enciphered offline PIN verification and signature verification.

 Fail CVM processing: this method forces terminal to terminate cardholder

verification process.

CVM list (tag ‘8E’) can be found with the following format (according to EMV Book 3 –

Table 40). There are three objects in CVM list

- X (4 bytes in binary format): this is a number set by Issuer to determine currency.

- Y (4 bytes in binary format): this is a number set by Issuer to determine currency.

- Two-byte cardholder verification rules.

 The structure of first byte is described in table 1.

Table 1

CVM list

 b8 b7 b6 b5 b4 b3 b2 b1

Fail CVM processing X - 0 0 0 0 0 0
 X - 0 0 0 0 0 1
 X - 0 0 0 0 1 0
 X - 0 0 0 0 1 1
 X - 0 0 0 1 0 0
 X - 0 0 0 1 0 1
 X - 0 1 1 1 1 0
 X - 0 1 1 1 1 1

Plaintext PIN verification

Enciphered online PIN verification

Plaintext PIN verification and Signature verification

Enciphered offline PIN verification

Encipher PIN verification and Signature verification

Signature verification

No CVM needed

Bit b8 is reserved for future use (RFU).

If bit b7 is 0, Terminal terminates verification process if current CVM fails.

If bit b7 is 1, Terminal tries next CVM (if existed) when current CVM fails.

26

 Second byte is seen as 2-digit hexadecimal number. It describes the condition

in which CVM is applied -

 00: CVM can be applied without restriction.

 01: CVM can be applied for all transactions with cash or cash-back.

 02: CVM can only be applied for transactions without cash or cash-

back.

 03: CVM can always be applied if terminal supports this CVM type.

 04: CVM can be applied if customer purchases with cash.

 05: CVM can be applied if customer purchases with cash-back.

If CVM list does not exist in ICC, terminal terminates cardholder verification process. If

CVM exists, terminal will perform each CVM rule according to the order it appears in the

CVM list. If one CVM rule fails, terminal continues with the next CVM rule until at least

one is successful or the list is finished.

4.4.3 Plaintext offline PIN verification

This section discusses plaintext offline PIN verification method provided by the

cardholder verification protection mechanism. Initially, some advantages and

disadvantages of the method are looked at. The section moves on with a description of

the verification procedure. At the end of this section, a guideline is specified showing how

software system implements a practical application to perform real plaintext offline PIN

verification on real life EMV smart card.

- Advantages and disadvantages

Plaintext offline PIN verification is one of the eight cardholder verification methods. It is

considered the most cost-effective verification method to prove the authenticity of the

cardholder based on Chip and PIN. The idea of this method is the use of 4-digit PIN which

is only known by the cardholder and the Chip to perform verification. This 4-digit PIN

however is transferred openly directly from customer input to ICC without encryption.

Terminal does not perform any cryptographic operation and does not require to equip

cryptographic facilities. Thus the obvious advantage is the fluency of network and the

terminal cost saving. However, the major drawback as implied is the lack of security.

Therefore, this type of verification should only be used at unattended terminals (such as

ATM machines).

- Verification procedure

27

Figure 13: PIN verification during transaction

Figure 13 illustrates plaintext offline PIN verification procedure. During a payment

transaction, cardholder enters this 4-digit via a PIN pad provided at Point of Service. The

entered PIN is not encoded in any way and is sent directly to ICC. ICC compares this PIN

with the reference PIN stored in its internal memory when the card is personalised. If the

user’s PIN is correct, transaction occurs normally. Otherwise, terminal prompts for PIN re-

entry and decreases PIN try counter number by 1. If this number reaches zero, card is

blocked and no more PIN attempts is allowed.

Step-by-step process for terminal to process plaintext offline PIN verification:

- If bit 5 in the first byte of AIP is not zero, terminal knows this card does support

cardholder verification. Otherwise, terminal will terminate the process and signals

‘ICC does not support CVM’.

- Terminal checks if CVM list exists. This is done by checking the existence of tag ‘8E’. If

it does not exist, terminal terminates process and signals ‘ICC does not support CVM’.

- Terminal analyses the second byte of cardholder verification rule, it makes sure all

conditions are met.

Customer inserts his card into Terminal

Terminal asks for PIN and Customer

inputs PIN with PIN pad

Transaction is

carried on

If PIN is not correct

Chip decreases PIN

Try counter by one

If PIN is correct

Card is ejected and

returned to Customer

when PIN Try Counter

reaches zero

28

- Terminal sees if the 6 right-most bits of the first byte of cardholder verification rule is

000001. If it is not, it means ICC does not support plaintext Offline PIN verification,

terminal stops.

- In the next step, terminal identifies how many times cardholder is allowed to input

PIN. This number is stored inside PIN Try Counter object data. In order to retrieve this

data object, terminal sends GET DATA command to ICC. This command is described in

chapter 5.2.3. ICC will respond with R-APDU containing PIN Try Counter number, it

begins with tag ‘9F 17’ followed by its length.

- If R-APDU’s Status Word is ‘90 00’ and PIN Try Counter is greater than 0, terminal

prompts customer to enter 4-digit PIN with PIN pad.

- Before sending this PIN to ICC, terminal needs to encode it into proper PIN block

format as described in table 2

Table 2

PIN block format

C N P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

C (Control Field): 4 bit value 0010 (2 in hexadecimal)

N (PIN length): 4 bit value from 0100 to 1100 (4 to C in hexadecimal)

P (PIN digit): 4 bit value from 0000 to 1001 (0 to 9 in hexadecimal)

P/F (PIN/Filler): this is determined by PIN length

F (Filler): 4 bit value 1111 (F in hexadecimal)

PIN can have any length from 4 digits to 12 digits. Each digit varies from ZERO

to NINE

- Terminals then applies VERIFY command with constructed PIN to ICC. This command

is described in chapter 5.2.4. ICC will compare this PIN with the actual PIN it stores.

- ICC responses with R-APDU.

 If Terminal inputs a wrong PIN, Status Word will be ’63 Cx’ with x is the

number of PIN Try Counter left. If x returns to ZERO, ICC blocks the Card and

no more CVM can be applied. If Terminal still inputs PIN after this point, ICC

returns Status Word ‘69 83’.

If entered PIN matches stored PIN on ICC. R-APDU has Status Word ‘90 00’.

29

 5. Command analysis

This chapter is dedicated to explain in detail all communication commands involved in

the project, because this is a very important means used by the software system to

communicate with smart card. Almost eighty percent of the project is carried out by

understanding commands, creating commands and analysing commands. This is referred

to intensively when writing the software system and producing the detailed design

document.

5.1 Application Protocol Data Unit

Application Protocol Data Unit (APDU) is defined by ISO 7816 standard. Information is

encapsulated in this data unit before being transferred to the other entity. There are two

APDU types: Command APDU (C-APDU) and Response APDU (R-APDU).

5.1.1 Command APDU

Command APDU (C-APDU) is the message sent by terminal to ICC to request a particular

action. There are two distinct parts of a C-APDU command: Header (4 bytes) and Body

(any arbitrary length) as seen in table 3.

Table 3

C-APDU command structure

Header Body

CLA INS P1 P2 Lc field Data field Le field

 CLA: class where the command lies.

 INS: the command itself.

 P1: command first parameter.

 P2: command second parameter, this is usually instruction.

 Lc: (1 bytes or 3 bytes): number of bytes of Data field.

 Data field: a string to be sent to ICC.

 Le: (0, 1, 2 or 3 bytes) identifies the maximum length (in bytes) in Data field to be

received later in R-APDU.

5.1.2 Response APDU

Response APDU (R-APDU) is the reply message sent by ICC back to Terminal in response

to a C-APDU command. Table 4 describes the structure of R-APDU. There are two distinct

parts: Body with length Lr ≤ Le (specified in C-APDU) and Trailer (2 bytes).

Table 4

R-APDU command structure

Body Trailer

Data field SW1 SW2

 Data field: a string returned by ICC.

 SW1 and SW2 (Status Word): show the result of applying C-APDU command,

whether the command is successful or failed, and the reason of failure. Some

30

examples of status word: 90 00 means command is successful, 6A 82 means

unknown parameters.

5.2 EMV commands

There are sixteen commands defined by ISO 7816-4 standard to interact with EMV card:

 READ BINARY, WRITE BINARY, UPDATE BINARY and ERASE BINARY commands

are used to interact with file.

 READ RECORD, WRITE RECORD, APPEND RECORD and UPDATE RECORD

commands are used to interact with records inside application.

 GET DATA and PUT DATA commands are used to interact with primitive data

objects.

 SELECT command is used to choose an application.

 VERIFIY command is used to initiate the comparison process of the data sent by

terminal and reference data stored in ICC.

 INTERNAL AUTHENTICATE and EXTERNAL AUTHENTICATE commands are used to

initiate the authentication data computation process.

 GET CHALLENGE command is used for security related procedure.

 MANAGE CHANNEL command is used to open or close channels.

However, each card operating system can define its own commands with APDU. For

example, a bank can include a BLOCK command to prevent access to a whole card. In the

scope of this project, four ISO 7816-4 standard commands are used, plus another EMV

specialised command. The four ISO 7814-4 standard commands are actually overridden

under EMV specification to adapt EMV environment, however they have the same

inherited features. They are SELECT, READ RECORD, VERIFY and GET DATA commands.

The specialised EMV command is GET PROCESSING OPTIONS used to initiate an EMV

transaction.

5.2.1 SELECT command

SELECT command is used to perform application selection. This command is wrapped in

C-APDU protocol to send from terminal to ICC. ICC will respond with R-APDU containing

FCI with all information about selected application.

For demonstration purpose, terminal will select Payment System Environment (PSE) with

AID ‘1PAY.SYS.DDF01’. Here are the steps to build SELECT command:

Header analysis:

- CLA is 00. This is set by default by ISO 7816-4.

- INS is A4. This is set by default by ISO 7816-4.

- P1: the first parameter of SELECT command is seen as 8-bit (b8, b7, b6, b5, b4, b3, b2,

b1) specified the method terminal wants SELECT command to perform, such as select

by name, select by full directory, etc

Terminal chooses select by name because the AID of PSE is known. According to ISO

7816-4, this 8-bit group is 0 0 0 0 0 1 0 0

31

However, because P1 only accepts one single value of 2-digit hexadecimal, terminal

converts 00000100 into 04h

Thus P1 = 04

- P2: the second parameter of SELECT command is also seen as 8-bit (b8, b7, b6, b5,

b4, b3, b2, b1) as described in table 5 specifying the record terminal wants to read.

According to ISO 7816-4, terminal should only be interested in bit b2 and b1.

Table 5

SELECT command parameter

 B8 b7 b6 b5 b4 b3 b2 b1

Read First Record X X X X X X
 X X X X X X
 X X X X X X
 X X X X X X

1 0
1 1
1 0

 1 1

Read Last Record

Read Next Record

Read Previous Record

Bit b3 to bit b8 are undefined and considered reserved for future use (RFU) [ISO

7816-4].

Terminal wants to select first record. Thus P2 = 00

At the moment, C-APDU Header is:

00 A4 04 00

Body analysis:

- Data field: this is where terminal puts the AID ‘1PAY.SYS.DDF01’, terminal needs to

convert this string into hexadecimal: 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31

- Lc: this is the number of bytes of Data field. Because ‘1PAY.SYS.DDF01’ has 14 bytes,

thus Lc = 0Eh

- Le: this is the number of expected bytes from R-APDU command. If left blank, R-APDU

can return any length of bytes

C-APDU Body is:

 0E 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31

Merge Header field and Body field together, terminal forms completed C-APDU SELECT

command to select PSE application from ICC:

 00 A4 04 00 0E 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31

5.2.2 READ RECORD command

READ RECORD command is used to read contents inside an application. This command

requires SELECT command to be performed beforehand. Terminal uses precisely the

same general format of C-APDU command, this time with different parameter values

The steps to construct C-APDU for READ RECORD command -

- CLA: 00, this parameter is defined by default by ISO 7816-4

- INS: B2, this parameter is defined by default by ISO 7816-4

- P1: this is Record number

- P2: is seen as 8-bit (b8, b7, b6, b5, b4, b3, b2, b1) as described in table 6.

- Lc: empty

32

- Data field: empty

- Le: 00 (this allows R-APDU to return any length)

Table 6

READ RECORD command parameter

 b8 b7 b6 b5 b4 b3 b2 b1

Read Record P1 - - - - -
 - - - - -
 - - - - -

 1 0 0
 1 0 1
 1 1 0

Read all Record from P1 to End

Read all Record from End to P1

Bit b8 to bit b2 are the 5 right most bits of SFI (Short File Identifier). If SFI has more than 5

bits, only 5 rightmost bits are kept, the rest are discarded. Now, SFI is merged with the

final 3 bits to form the complete parameter.

To demonstrate the idea, assuming SFI is 08h. Terminal converts it into 8 bits: 0000 1000.

As only 5 leftmost bits are kept, terminal discards the 3 rightmost bits, hence SFI reads:

00001. Now, assuming terminal wants to read first record P1 only, the three bits

representation are 100. By merging all together, terminal has: 00001100. Finally, it

converts this string back to hexadecimal 0Ch.

Full C-APDU command in this example will read:

 00 B2 01 0C

5.2.3 GET DATA command

GET DATA command is used by ICC to obtain a data object being controlled by ICC. These

data objects are directly managed and frequently updated by ICC, thus are different from

static records and files hard-coded into the Chip during personalised stage of smart card

manufacturing. An example of such primitive data object is the ‘PIN try counter’, this

object holds the value of remaining PIN tries customer can perform on the card.

Here are the steps to build C-APDU for GET DATA command -

- CLA: 80. This is default by EMV specification.

- INS: CA. This is default by EMV specification.

- P1 P2: 9F 17. This is PIN Try Counter parameter, according to EMV specification

- Lc: empty

- Data: empty

- Le: 00. This allows R-APDU command to return any arbitrary length.

Thus, C-APDU command should read:

80 CA 9F 17 00

5.2.4 VERIFY command

VERIFIY command is used to initiate the comparison process of the data sent by terminal

and reference data stored in ICC.

The steps to build C-APDU for VERIFY command -

- CLA: 00, according to ISO 7816-4 standard.

- INS: 20, according to ISO 7816-4 standard.

33

- P1: 00, according to ISO 7816-4 standard.

- P2: this depends on type of data to be sent.

- Lc: length of P2 parameter.

- Data: the data sent to ICC for comparison.

- Le: empty, so R-APDU can have arbitrary length.

5.2.5 GET PROCESSING OPTIONS command

This command is used by terminal to initialise an EMV transaction with ICC. Here are the

steps to build C-APDU for GET PROCESSING OPTIONS command -

- CLA: 80, according to EMV specification – Book 3.

- INS: A8, according to EMV specification – Book 3.

- P1: 00, this is RFU as specified by EMV specification – Book 3.

- P2: 00, this is RFU as specified by EMV specification – Book 3.

- Lc field: 02, this is the length of Data field in this case.

- Data field: 83 00, this is where PDOL is specified, followed by tab 83. Terminal in this

project will ignore PDOL as it does not have information about the business

environment set up at Point of Service. (Referring to chapter 4.3 on PDOL discussion).

- Le field: empty, so it accepts any length returned by R-APDU.

So C-APDU for GET PROCESSING OPTIONS should read:

 80 A8 00 00 02 83 00

5.3 Response command analysis

This section describes how to analyse information returned by ICC under different

circumstances. Each case is explained with an example obtained from real EMV card.

5.3.1 Payment application R-APDU analysis

This section shows how to analyse payment application information received from ICC

when terminal looks into PSE folder. The following sequence shows an example of R-

APDU command returned by ICC in a NatWest MasterCard:

70 1A 61 18 4F 07 A0 00 00 00 04 10 10 50 0A 4D 41 53 54 45 52 43 41 52 44 87 01 01

 Application ID Application label

Terminal looks for tag ‘4F’ as it indicates AID (Application ID). Terminal sees that this tag

only appears once in the sequence, thus the EMV card only contains one payment

application. Next, terminal focuses on getting information about this application. It sees

the next byte is after ‘4F’ is 07h, which means the next 7 bytes ‘A0 00 00 00 04 10 10’

indicates AID. The following tag ‘50’ indicates the application label, which has 0Ah bytes.

Because 0A in hexadecimal is equal to 10 bytes in decimal thus the next 10 bytes will

indicate the application label: 4D 41 53 54 45 52 43 41 52 44. By translating this

hexadecimal sequence to ASCII format, terminal gets human-readable string

MASTERCARD, which surprisingly is also the type of EMV card. The next tag ‘87’ indicates

34

application priority, which follows by 01h means the next only byte contains priority

level. Terminal sees that this application has highest priority level 1.

5.3.2 GET PROCESSING OPTIONS R-APDU analysis

This section shows how to analyse information received from GET PROCESSING OPTIONS

command. In response to this command, ICC will set up an EMV transaction and returns

R-APDU command containing two important fields called AIP (Application Interchange

Profile) and AFL (Application File Locator). These two fields contain information about

Card Authentication Methods and Cardholder Verification Methods. Body of R-APDU will

have the following structure. || symbol means concatenation.

Tag ‘80’ || Length of AIP + AFL || AIP || AFL

AIP contains two bytes, in which the first byte contains CAMs and CVMs status, while the

second byte is reserved for future (RFU). If terminal divides first byte into 8 bit, it can

extract useful information about CAMs and CVMs.

 Bit 7: if value of bit 7 is 1, it means ICC supports offline data authentication SDA.

If value is 0, it means ICC does not support offline authentication SDA.

 Bit 6: if value of bit 6 is 1, it means ICC supports offline data authentication DDA.

If value is 0, it means ICC does not support offline authentication DDA.

 Bit 5: if value of bit 5 is 1, it means ICC supports cardholder verification, if value is

0, it means ICC does not support cardholder verification.

 Bit 2: if value of bit 2 is 1, it means ICC supports combined offline data

authentication DDA and application cryptogram generation.

AFL contains one or many 4 byte group AEF which contains public information needed for

terminal to complete the transaction.

 Byte 1 identifies SFI.

 Byte 2 identifies first record number.

 Byte 3 identifies last record number.

 Byte 4 identifies number of records which have offline data authentication.

An example of R-APDU sequence obtained from a NatWest MasterCard:

80 0A 5C 00 08 01 01 00 10 01 04 01

 AIP AFL1 AFL2

Terminal sees that two bytes AIP is ‘5C 00’. By dividing first byte 5C into 8 bits: 0101 1100,

terminal can analyse status of CAMs and CVMs:

 Bit 7 is 1, which means ICC supports offline data authentication SDA.

 Bit 6 is 0, which means ICC does not support offline data authentication DDA.

 Bit 5 is 1, which means ICC supports cardholder verification.

 Bit 2 is 0, which means ICC does not support combined offline data

authentication DDA and application cryptogram generation.

35

Next, terminal sees that there are two groups of AFLs. Terminal will analyse the first AFL:

08 01 01 00. The five most significant bits of first byte 08 indicates SFI values, in this case

it is 00001. The second byte 01 shows that the first record number is 01. The third byte

shows that the last record number is 01, in which terminal can conclude that there is only

one record for this SFI. Finally, the last byte is 00, which means this record does have

offline data authentication.

Next, terminal analyses the second AFL: 10 01 04 01. The five most significant bits of first

byte 08 indicates SFI values, in this case it is 00010. The second byte 01 shows that the

first record number is 01. The third byte shows that the last record number is 04, in which

terminal can conclude that there is four records for this SFI. Finally, the last byte is 01,

which means only first record has offline data authentication.

5.3.3 Cardholder verification R-APDU analysis

This section shows how to analyse cardholder verification methods information obtained

from CVM list. The following R-APDU sequence shows an example of CVR (Cardholder

verification rule) obtained from CVM list:

42 01 41 03 1E 03 02 03 1F 03

CVR1 CVR2 CVR3 CVR4 CVR5

Terminal knows the each CVR is a group of two bytes, thus it will process each CVR

accordingly. For demonstration purposes, terminal will analyse the first three CVRs only.

1) For CVR1 ‘42 01’, the first byte 42 indicates the cardholder verification method and

the second byte 01 indicates the rule in which the method is applied. Terminal

converts first byte from hexadecimal into 8 bits, therefore it gets 01000010, then it

discards the two leftmost bits of the sequence to obtain 000010. This is the

representative sequence for enciphered online PIN verification method, according to

Table1 - CVM list. The condition in which this method is applied is 01, which indicates

it is performed if unattended cash at point of service.

2) For CVR2 ‘41 03’, the first byte 41 indicates the cardholder verification method and

the second byte 01 indicates the rule in which the method is applied. Terminal

converts first byte from hexadecimal into 8 bits, therefore it gets 01000001, then it

discards the two leftmost bits of the sequence to obtain 000001. This is the

representative sequence for plaintext offline PIN verification method, according to

Table1 - CVM list. The condition in which this method is applied is 03, which indicates

it is always performed if the terminal supports this method.

3) For CVR2 ‘1E 03’, the first byte 1E indicates the cardholder verification method and

the second byte 01 indicates the rule in which the method is applied. Terminal

converts first byte from hexadecimal into 8 bits, therefore it gets 00011110, then it

discards the two leftmost bits of the sequence to obtain 011110. This is the

representative sequence for signature verification method, according to Table1 -

36

CVM list. The condition in which this method is applied is 03, which indicates it is

always performed if the terminal supports this method.

5.3.4 Personalised information R-APDU analysis

This section shows how to analyse personalised information received from one record on

ICC. The following sequence shows an example of R-APDU:

70 36 5F 20 0E 4E 47 55 59 45 4E 2F 4B 48 55 4F 4E 47 20

 name on card

57 13 54 54 ** ** ** ** 36 94 D1 00 22 01 15 79 20 09 01 89 1F 9F 1F 0D 31 35 37 39 32

 track 2 data

30 30 39 30 31 38 39 31

The terminal looks for tag ‘5F 20’ which indicates name on card. This tag is followed by

OEh which indicates the next 14 bytes belongs to name on card content: 4E 47 55 59 45

4E 2F 4B 48 55 4F 4E 47 20. By translating this sequence into ASCII format, terminal gets

meaningful name on card ‘NGUYEN/KHUONG’.

Tag ‘57’ found in this sequence is a duplicated of track 2 information in magnetic stripe. A

quick check with magnetic stripe reader at the back of EMV card shows the same result

for track 2. Terminal sees that the sixteen digits followed are the actual sixteen digits on

card. For security purpose, the eight digits in the middle are hidden: 54 54 ** ** ** ** 36

94. This is followed by a deliminator D to separate between sixteen digits and expiry date:

10/02 (February-2010).

37

6. EMV communication protocol construction

This chapter describes how to construct a communication protocol to be used to select

payment application. Initially, an approach is thought of, based on current organisation of

EMV file system discussed in chapter 3. Then, some essential theories are reviewed to

prepare for construction process. The chapter is followed by three construction steps.

This process makes use of SELECT and READ RECORD commands described in chapter 5.

6.1 Approach discussion

Before started, terminal must always know beforehand at least one existing application

on ICC. However, as there are only a limited number of applications currently allowed to

run on EMV Card, a sensible approach is performing an exhaustive search to verify the

existence of each application. Notice that at the time after ICC resettles, it is not possible

to tell what applications ICC supports. Terminal chooses PSE as the application to select

as this is a popular DDF on mostly all EMV Card. This DDF contains all EMV payment

related applications.

6.2 Protocol algorithm

Before introducing the algorithm, some EMV theories are reviewed. When a Smartcard is

inserted into a Terminal, it is in hibernation state and cannot be used yet. Thus, Terminal

will send an electric shock signal to wake ICC up. This is called ‘Reset process’. In response

to this event, ICC will reply with an ATR string. Right after terminal initialises

communication with ICC, terminal position is at EMV Root Master File (MF). In other

words, it is at the top of the file system tree. However, it does not know how many ADFs

master file has, as well as their locations (at what byte).

The algorithm pseudo code will be provided with further explanation in the detailed

design chapter. Four steps of the algorithm are processed in their natural orders unless

being re-directed by instruction -

- Step 1: PSE confirmation and preparation

Terminal applies SELECT command (building instruction described in chapter 5.2.1) to

select PSE folder on ICC. We know PSE’s AID is ‘1PAY.SYS.DDF01’, therefore C-APDU

should read:

 00 A4 04 00 <14 bytes hexadecimal of 1PAY.SYS.DDF01>

= 00 A4 04 00 0E 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31

ICC should reply with Status Word ‘90 00’ (successful command) confirming the

existence of PSE on ICC and the SFI of this PSE folder. Any Status Word different from

‘90 00’ either means PSE does not exist or it is inaccessible. Process is terminated in

other cases.

- Step 2: READ record inside

After PSE folder is selected, terminal can read the content inside using READ RECORD

command (building instruction described in chapter 5.2.2). However, because READ

38

RECORD command demands precisely the number of bytes to read, terminal has to

find out the size of first record. Terminal puts 0 bytes as size parameter in READ

RECORD command and ICC will reply the actual size of the first record. The C-APDU

command should read:

 00 B2 01 0C 00

Because the record size is different for each ICC, let us assume it is 03 bytes for

explanation purposes. The R-APDU command received from ICC should read:

 6C 03

Here, R-APDU’s first Status Word points out the requested size is wrong (6C), and

second Status Word 03 is the correct size it should be. Now, terminal can use READ

RECORD command to get first record. The C-APDU command should read (notice the

change in final two bytes since first READ RECORD command)

00 B2 01 0C 03

At this stage, terminal must get a successful R-APDU ‘90 00’ along with record details.

Terminal will apply READ RECORD command again, this time asking ICC to provide the

next record. At this stage, there are two possibilities:

 If the next record is an ADL, advances to step 3.

 If the next record is a DDF, advances to step 4.

Otherwise, terminal keeps repeating step 2 until R-APDU returns ‘6A 83’, which

means ‘Record not found’. In this case, terminal is confident all records in the same

folder have been read. Process is exited normally.

- Step 3: ADF process

This step will process ADF file only. Terminal simply performs a SELECT command

again with this new ADF. In order words, terminal performs step 1 again with the new

AID of current ADF. After this step finishes, terminal returns to previous higher level

of the tree, at the point it left off to traverse deeper, and continue from then.

- Step 4: DDF process

This step will process DDF file only. We simple perform a SELECT command again with

this new DDF. Step 1 is called with new SFI of current DDF. After this step finishes,

terminal returns to previous higher level of the tree, at the point it left off to traverse

deeper, and continue from then.

This algorithm is known as Depth First Search (DFS). This is the most efficient algorithm

used to traverse a Tree. As we know, EMV file system is viewed as a Tree, this is the best

approach. A more detailed Java style pseudo code of the algorithm is listed in the

detailed design chapter. The following example will summarise this chapter:

39

Figure 14: EMV file system example

The example figure above shows that EMV has four records. Record1 and Record2 are

located right under MF, while Record3 is inside ADF1 folder and Record4 is under DDF1

folder. The algorithm starts at MF, step 1 is performed thus terminal reads the first

record, then proceeds to the next item. Terminal realises the current item is indeed

another record (Record2) so step 1 is repeated again. However, the next found item is an

ADF1, according to the first branch, the algorithm goes to step 2, and the third record is

read. Since there are no more records left under ADF1, algorithm returns to previous

higher level of the tree, which is ADF1. Now it proceeds to the next item and finds DDF1,

according to the second branch, algorithm goes to step 3, the fourth record is read.

Algorithm again goes back to previous higher level of the tree. But now there are no

more records left. Algorithm is finished, all records have been read.

MF

Record1 Record2 DDF1

Record3

ADF1

Record4

40

 7. High level design

This chapter sketches the logical structure of all components in the system at a high level

design approach, from a general system overview to every detail inside each component.

Initially, an overview of all user accessible functionalities is mentioned. Next, the

architecture structure of the whole system is specified, followed by the architecture of

involving hardware and software system. Then, a further step to look into software

system is introduced by the design of each important Java class, with the aid of UML class

diagrams. The chapter continues with description of the connection and interaction

amongst those classes, featuring how information is passed and exchanged. The flow of

data is illustrated by a sequence diagram. Next, a data dictionary is compiled to provide

an insight of what type of data the system is handling. Finally, a screenshot of each main

graphical user interface is captured to illustrate a better view of complete software.

There is also a Class Responsibility Collaborators cards (CRC cards) section in Appendix C,

which was used extensively when developing the high level design of the software

system.

7.1 System functionalities overview

This section introduces all functionalities of the software system, which is accessible to

the user. The software system incorporates six clear functionalities.

1) Smart card recognition.

2) Payment application finding.

3) Card authentication methods and cardholder verification methods survey.

4) Plaintext offline PIN verification application.

5) Personalised information collecting.

6) Report generation.

The first functionality of the system is the ability to recognise an inserted smart card in

the reader device. The recognition process includes the tracing back of card vendor,

checking working status and setting up a connection between terminal and ICC. The

second functionality is the ability of locating payment applications existing on ICC and

information of each application. Next, as one of the project objectives to address, the

third functionality is designed to survey and learn information about card authentication

methods and cardholder verification methods. Using gathered information from

cardholder verification methods, terminal will decide if plaintext offline PIN verification

can be performed in current ICC. This purely depends on the capability of ICC, and this

makes the fourth functionality – practical plaintext offline PIN verification. The fifth

functionality is designed to collect and analyse all personalised information in the card

such as name on card, sixteen digits on card, expiry date, effective date, BIC and IBAN.

Finally, a crucial functionality of survey software is the ability to generate a user-readable

report. This makes the sixth functionality of the system.

41

7.2 General system architecture

Figure 15: General system architecture

Figure 15 illustrates how the hardware component and software component interact

with each other. PC/SC framework and smart card resource manager are provided under

Windows operating system only. They handle the communication signals between PC/SC

compatible smart card reader and any software system running under Windows. The

software programming environment is Java. Java API provides a handy set of libraries to

write software system under Java environment.

7.3 Hardware architecture

 Figure 16: Smart card reader contact surface

This picture is taken from www.smartcardbasics.com website

Firstly, it is worth remembering that the smart card reader used in this project is bought

from the market. The reader contact surface and smart card surface are illustrated in

figure 16. The reader has a USB port connector, thus requires a USB port on the other

side of the software system. The Chip part on the smart card must make contact with the

reader surface on smart card reader. Electricity for smart card operations is supplied at

Power point. Reset point is where reader sends signals to reset microprocessor inside

smart card Chip. Data communication is performed at I/O point. This is only half duplex

transportation, so at any time, reader is either sending or receiving information to/from

Chip.

ICC Chip contact

Power

Reset

Check

Ground

Optional

I/O

Computer running Windows OS

Software system

PC/SC framework

Smart card

resource manager

Smart card reader
Java API

http://www.smartcardbasics.com/

42

7.4 Software system architecture

Figure 17: Software system architecture

Figure 17 illustrates the visible software components of the system to user. Each box

represents the logical link amongst different functionalities of the system. User begins

with ‘Card input’ page. This is where a connection is established between smart card

reader and smart card. After that, control is redirected to ‘Payment application’ page.

From here, user can indentify if there is a payment application on smart card. There are

provided functions which allow all existing payment applications to be displayed and

allows user to choose which application to start a new transaction. After a payment

application is chosen, a new EMV transaction is initialised. Control is then switched to

‘Transaction initialisation’ page. When a transaction has been established, user can view

personalised information which was hard-coded into the chip when manufactured or

user can survey the two protection mechanism ‘card authentication’ and ‘cardholder

verification’. Card authentication page displays supporting information of three card

authentication methods, along with their data elements. Cardholder verification provides

the same functionality, but includes a new practical function which performs real offline

PIN verification with presented smart card. Finally, control is passed on to ‘Project

generation’ page where user can export all surveyed information onto a text file. The

system will ensure confidentiality for user information. Part of sensitive information such

as Credit Card number and PIN number will be hidden. This information cannot be

reversed and reports should be deleted after a certain period of time.

7.5 Sequence diagram

Figure 18 is an example of sequence diagram from a new session is created when EMV

card is inserted until it is finished.

Cardholder verification Card authentication

Personalised information

Transaction initialisation

Offline PIN verification

Card input Payment application

Security protection

Report generation

43

Figure 18: Session sequence diagram

7.6 User Interface

This section provides screenshots of all main pages of the software system, along with

their descriptions.

7.6.1 Card input interface

Figure 19: Software main interface

44

Figure 19 gives an example of first stage of system software, when user inserts a UK

NatWest card into card reader and presses ‘Inset Card’ button.

7.6.2 Payment application interface

Figure 20: Payment application interface

Figure 20 shows how payment application locating process can be performed. By clicking

on ‘Locate payment application’ button, system will check if there is a payment

application found on card. Pressing the ‘List all’ button will list all applications along with

their attributes. In the figure, there is only one payment application found on the card,

thus there is only one column for the application attributes. Finally, pressing ‘Initiate

transaction’ will create an EMV transaction using the payment application found in the

previous step. The status will be updated accordingly.

7.6.3 Card authentication interface

Figure 21: Card authentication interface

45

Figure 21 depicts the card authentication user interface. By pressing the ‘Analyse’ button,

the system will tell what authentication method the ICC supports. Furthermore, user can

explore additional data elements of each supported method by pressing the button of

that method.

7.6.4 Cardholder verification interface

Figure 22: Cardholder verification interface

Figure 22 shows cardholder verification user interface. Similarly to card authentication

interface, by pressing the ‘Analyse’ button, the system will update current supporting

status of each verification method, and the condition in which the method can be

applied.

7.6.5 Personalised information interface

Figure 23: Personalised information interface

46

Figure 23 shows the user interface of personalised information. By pressing the ‘Get

personalised data’ button, all personalised information are collected.

7.6.6 Offline PIN verification interface

Figure 24: Offline PIN verification interface

Figure 24 shows offline PIN verification interface. The interface has been designed to

look like the PIN pad found in the ATM machine. Besides ten digit keys from zero to

nine to input PIN digits, users are provided with ENTER key to send the PIN to ICC for

verification, CLEAR key to erase screen and re-enter PIN, and CANCEL key to ‘eject’

card and finish current transaction. The top grey screen shows the status of the

current process, if the user enters a wrong PIN, the number will decrease. If such a

number reaches one, it will signal the users a last try. ‘Initialise’ button will trigger

terminal to get ready for offline PIN verification process.

47

8. Detailed design

This chapter is an expansion of the high level design chapter. Six functionalities of the

software will be looked at very low level details in Java style pseudo code. Initially, a brief

introduction about Java is given as this is the programming language used for pseudo

code in this chapter. Next, each functionality of the system is explained in Java style

pseudo code. The chapter is concluded by the pseudo code of the Java algorithm used in

the project.

8.1 Java programming

Java language is originally famous for their portability and multi-platform. Yet for a long

period of time, Java library has expanded to accommodate a variety of different

functions. Furthermore, as a feature of open-source programming language, Java allows

developers to write their own library functions. The software system utilises a set of Java

APIs provided by JACCAL. In the subsequent sections, Java style pseudo code is used to

demonstrate the low level implementation of each class of the software system.

8.2 Classes specification

This section explains the design of important classes of software system, along with their

functionalities. The order of class discussion also logically matches the flow of control and

information illustrated in the software architecture part. Here is the list of seven

important classes to be explained in this section and their contributions to six

functionalities of the system listed in high level design chapter 7.1:

1) Card input class incorporates smart card recognition functionality.

2) Payment application class forms payment application finding functionality.

3) Transaction initialisation class does not incorporate an independent function, but it

contributes to all survey functionalities in the software.

4) Card authentication class performs card authentication methods survey functionality.

5) Cardholder verification class performs cardholder verification methods survey

functionality.

6) Plaintext offline PIN verification class performs plaintext offline PIN verification

application.

7) Personalised information class incorporates personalised information collecting

functionality.

8) Report generation class incorporates report generation functionality.

8.2.1 Card input class

Table 7

Card input class

48

Table 7 illustrates card input class. This class creates a fresh session for each detected

smart card by using createNewSession() method. The creation process uses

SessionFactory object provided by JACCAL. It provides an instance on each request. The

whole session prevails inside this instance. When smart card is no longer used, the

session will be terminated by Java garbage collection mechanism. This simply involves

closing the connection between reader and software, and clearing the occupied memory

used by software variables. At the beginning, software system uses open() method to

send an instruction to reset the ICC, if successful, smart card will reply with an Answer To

Reset sequence (ATR). This ATR sequence will be casted to String format with toString()

method provided by Java for analysis purposes. This ATR sequence is unique for each

card vendor, thus makes it possible to trace back the vendor with processATR() function.

This function simply looks up the ATR sequence with the format specified in

smartcard_list text file. Since this pre-made text file is published under GNU license, the

original format will be prevailed and the software system will adapt to smartcard_list

format. Finally, software system ensures the connection is correctly established by

checking the status of ICC with prepareConnection() function.

The following Java style pseudo code demonstrates the solution ideas:

public class CardInput

{

 public void createNewSession()

 {

 f = SessionFactory.getInstance();

 // open a new session with EMV card

 se = f.createSessions();

 }

 public ATR resetSmartcard()

 {

 for(int i = 0; i < se.length; i++)

 {

 // reset EMV card

Atr atr = se[i].open();

 atrValue = atr.toString();

 }

return atrValue;

 }

 public void processATR(String atr)

 {

 // process this ATR sequence to trace back card vendor

FileReader dataIn = new FileReader ("smartcard_list.txt");

 BufferedReader f = new BufferedReader(dataIn);

 String line;

49

 while (true)

 {

 while (true)

 {

 line = f.readLine();

 if (!line.isEmpty() && line.charAt(0) >= '0'

&& line.charAt(0) <= '9') break;

 if (line.equals("# do not delete")) break;

 }

 if (line.equals("# do not delete")) break;

 if (atrCard.equals(line))

 while (true)

 {

 line = f.readLine();

 line = line.trim();

 if (line.isEmpty()) break;

 System.out.println(line);

 cardManufacturer += line + "\n";

 }

 }

 }

 public void prepareConnection()

 {

 // prepare connection between software and ICC

 }

}

8.2.2 Payment application class

Table 8

Payment application class

Table 8 describes payment application class and its methods. This class handles

application selection procedure. Firstly, it verifies if there exists a payment application

container in the card with locatePaymentApplication() function. This function makes use

of SELECT command described in chapter 5.2.1. If there is such container, the software

system will select the folder by calling countNumberPaymentApplication() function. This

function makes use of READ RECORD command described in chapter 5.2.2 and returns

the total number of applications inside this folder as an integer number. Finally,

listAllPaymentApplication() function will look inside each payment application and record

50

its attributes such as application label, application priority and application preferred

name. The method returns all recorded information as an array of payment applications

to be used to create a transaction in the next part.

The following Java style pseudo code demonstrates the solution ideas:

public class PaymentApplication

{

 public void locatePaymentApplication()

 {

capdu = new ApduCmd ("00 A4 04 00 0E 31 50 41 59 2E 53

59 53 2E 44 44 46 30 31");

 rapdu = se[0].execute(capdu);

 if (rapdu.getStatusWord().isSuccess())

 tx1.setText("Payment application found!");

 else

 {

 tx1.setText("Payment application NOT found!");

 return;

 }

 capdu = new ApduCmd("00 B2 01 0C 00");

 rapdu = se[0].execute(capdu);

String size = NumUtil. hex2String (rapdu.getStatusWord().

getSw2());

 // concat with byte length obtained above to get PSE data

 capdu = new ApduCmd("00 B2 01 0C" + size);

 rapdu = se[0].execute(capdu);

 processApplication(rapdu.toString());

 }

public int countNumberPaymentApplication()

 {

 // counter number of applications

 }

 public paymentApplication[] listAllPaymentApplication()

 {

 // returns list of payment applications

 }

}

51

8.2.3 Transaction initialisation class

Table 9

Transaction initialisation class

When a list of all payment transactions has been compiled, an EMV transaction can be

initialised. The reason a transaction must be created is because that is the only way

information can be surveyed. Under no other circumstances, ICC agrees to release

information without transaction establishment. By looking at the application priority

found in the payment application list, software system can decide which application

would be used for creating a transaction. In practice, the one with the highest priority

(level 1) is selected by calling selectPaymentApplication() function. This function makes

use of SELECT command. The active entity in this procedure is software system, which

requests a transaction to be created, thus sending a list of environmental conditions,

business restrictions to the passive entity – smart card using initiateTransaction()

function. On receiving the list, ICC adapts to it and responds with either an agreement to

proceed with the transaction or some minor tweaks needed in order to continue. If

transaction is successfully initialised, this function returns boolean value ‘true’, otherwise

it returns ‘false’ to signal failure. Software system will react to this agreement and the

transaction is finalised with prepareTerminalAndICC() function. These functions are

encapsulated in transaction initialisation class described in table 9.

The following Java style pseudo code demonstrates the solution ideas:

public class TransactionInitialisation

{

 public void selectPaymentApplication()

 {

 // scan through the array of payment application

 // select payment application with highest priority

 capdu = new ApduCmd("00 A4 04 00 07" + AID);

 rapdu = se[0].execute(capdu);

 capdu = new ApduCmd("80 A8 00 00 02 83 00");

 rapdu = se[0].execute(capdu);

 }

public boolean initiateTransaction()

 {

 // check if transaction has been initiated successfully

 if (rapdu.statusWord.isSuccess())

52

 transaction = true;

 else

 transaction = false;

return transaction;

 }

 public void prepareTerminalAndICC()

 {

 // returns list of payment applications

 }

}

8.2.4 Security protection class

Table 10

Security protection class

Table 10 illustrates security protection class and its methods. This class is only performed

after a transaction is initiated. Based on current security and business environment,

transactions may be required to be acknowledged online via issuer’s network or locally

offline between merchant terminal and ICC. checkSecurityStatus() function of the class

will gather environment status and verify this. Next, extractAuthentication() and

extractVerification() functions take responsibility to extract relevant security information

for card authentication and cardholder verification procedures, and then converts them

into the correct data format for authentication and verification processes to be

continued.

The following Java style pseudo code demonstrates the solution ideas:

public class SecurityProtection

{

 public void checkSecurityStatus()

 {

 // gather security information

 // check existence of CVM list and AIP

 }

public authenticationData extractAuthentication()

 {

53

 // passing the data on for authentication procedure

 }

public verificationData extractVerification()

 {

 // passing the data on for verification procedure

 }

}

8.2.5 Card authentication class

Table 11

Card authentication class

Table 11 illustrates card authentication class. This class handles card authentication

processes. On receiving authentication data from Security protection class, software can

analyse the authentication status to find out the support status of Static Data

Authentication, Dynamic Data Authentication and combined Dynamic Data

Authentication/application cryptogram generation by calling authenticationStatus()

method. This method simply analyses the second bit, third bit and seventh bit of AIP

sequence as described in chapter 4.4.1. Those methods supported by ICC will be further

analysed for their data elements by SDADataElement() method,

DDADataElementMethod() and cDDADataElement() method respectively. Each of the

three methods returns authenticationElement which contains data elements found on

ICC.

The following Java style pseudo code demonstrates the solution ideas:

public class CardAuthentication

{

 public void authenticationStatus()

 {

 // convert hex to Dec

 int decimal = hexToDec(AIP);

// convert Dec to Binary

 st = Integer.toBinaryString(decimal);

// append 0 at the beginning to restore 8 bit as

toBinaryString cut all zero at front

 while (st.length() < 8)

 st = "0" + st;

54

 if (st.charAt(1) == '1') SDA = true; else SDA = false;

 if (st.charAt(2) == '1') DDA = true; else DDA = false;

 if (st.charAt(6) == '1') cDDA = true; else cDDA = false;

 }

 public authenticationElement SDAElement()

 {

 int index, length;

 // get CertificationAuthorityPublicKeyIndex, tag 8F

 index = AFL.indexOf("8F");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+2,index+4));

 // multiple 2 since it is 2 bytes per hexa

CertificationAuthorityPublicKeyIndex = AFL.substring

(index + 4, index + 4 + length * 2);

 }

 // get Issuer Public Key Certificate, tag 90

 index = AFL.indexOf("90");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+2,index+4));

 // multiple 2 since it is 2 bytes per hexa

IssuerPublicKeyCertificate = AFL.substring(index + 4,

index + 4 + length * 2);

 }

 //Signed Static Application Data, tag 93

 index = AFL.indexOf("93");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+2,index+4));

 // multiple 2 since it is 2 bytes per hexa

SignedStaticApplicationData = AFL.substring(index +

4, index + 4 + length * 2);

 }

 // Issuer Public Key Remainder, tag 92

 index = AFL.indexOf("92");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+2,index+4));

 // multiple 2 since it is 2 bytes per hexa

IssuerPublicKeyRemainder = AFL.substring(index + 4,

index + 4 + length * 2);

 }

55

 // Issuer Public Key Exponent, tag '9F32'

 index = AFL.indexOf("9F32");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+4,index+6));

 // multiple 2 since it is 2 bytes per hexa

IssuerPublicKeyExponent = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 }

 public authenticationElement DDAElement()

 {

 // retrieve DDA data elements

 }

 public authenticationElement cDDAElement()

 {

 // retrieve combined DDA data elements

 }

}

8.2.6 Cardholder verification class

Table 12

Cardholder verification class

Table 12 describes cardholder verification class. This class controls cardholder verification

procedure. Similarly to Card authentication class, Cardholder verification class receives

protection data from Security protection class. It analyses this data to check the status of

seven different methods including plaintext offline PIN verification, enciphered online PIN

verification, plaintext offline PIN verification and signature, enciphered offline PIN

verification, enciphered offline PIN and signature, signature verification only and no

cardholder verification needed using cardholderVerificationStatus() method. Those

statuses can be determined by checking CVM list. The condition in which the method is

applied is also recorded by the function. Furthermore, each EMV card has a different

priority order in which each cardholder verification method is applied after another.

cardholderVerificationPriority() function will analyse this priority order and returns an

array containing cardholder verification methods in their decreasing order of priority.

The following Java style pseudo code demonstrates the solution ideas:

56

public class CardholderVerification

{

 public void cardholderVerificationStatus()

 {

 String CVR = "", rule = "", condition = "";

 int index, length;

 // get CVM list, tag 8E

 index = AFL.indexOf("8E");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index+2,index+4));

 // multiple 2 since it is 2 bytes per hexa

 CVR = AFL.substring(index+4,index+4+length * 2);

 // ignore the first 8 bytes of X and Y

 CVR = CVR.substring(16);

 }

 index = 0;

 while (index < CVR.length())

 {

 rule = CVR.substring(index, index + 2);

 condition = CVR.substring(index + 2, index + 4);

 // convert to 8 bit binary & trim the 6 bit right most

 rule = hexToBin(rule).substring(2);

 if (condition.equals("00"))

 condition = "will always be performed";

 else

 if (condition.equals("01"))

 condition = "is performed if unattended cash";

 else

 if (condition.equals("02"))

condition = "is performed if not unattended

cash, not manual cash and not purchase with

cashback";

 else

 if (condition.equals("03"))

condition = "is performed if terminal supports

this method";

 else

 if (condition.equals("04"))

condition = "is performed if customer pays

with manual cash";

 else

 if (condition.equals("05"))

57

condition = "is performed if transaction with

cashback";

 else

 condition = "";

 if (rule.equals("000001"))

 {

 Plaintext_offline_PIN_verification = "supported";

 cPlaintext_offline_PIN_verification = condition;

 }

 else

 if (rule.equals("000010"))

 {

 Enciphered_online_PIN_verification = "supported";

 cEnciphered_online_PIN_verification = condition;

 }

 else

 if (rule.equals("000011"))

 {

 Plaintext_offline_PIN_and_signature = "supported";

 cPlaintext_offline_PIN_and_signature = condition;

 }

 else

 if (rule.equals("000100"))

 {

 Enciphered_offline_PIN_verification = "supported";

 cEnciphered_offline_PIN_verification = condition;

 }

 else

 if (rule.equals("000101"))

 {

 Enciphered_offline_PIN_and_signature = "supported";

 cEnciphered_offline_PIN_and_signature = condition;

 }

 else

 if (rule.equals("011110"))

 {

 Signature_verification_only = "supported";

 cSignature_verification_only = condition;

 }

 else

 if (rule.equals("011111"))

 {

 No_cardholder_verification_needed = "supported";

 cNo_cardholder_verification_needed = condition;

 }

58

 index += 4;

 }

 }

 public []cardholderVerificationMethod cardholderVerificationPriority()

 {

 // returns list of cardholder verification methods

 }

}

8.2.7 Plaintext offline PIN verification

Table 13

Plaintext offline PIN verification

Table 13 describes plaintext offline PIN verification class. This class performs offline PIN

verification application if the card supports this method. Initially, the terminal needs to

decide if customer is allowed to enter PIN, and if possible, how many attempts they are

allowed to do so. getPINTryCounter() method obtains PIN Try counter object in ICC with

GET DATA command. After all required information has been satisfied and

checkVerificationCondition() method return ‘true’, terminal prompts user to input 4-digit

PIN. This PIN is sent clear to ICC for verification by applyPINverification() method. The

method firstly encodes the 4-digit PIN in correct format described in chapter 4.4.3. After

that, the verification procedure is carried out independently by ICC. If customer PIN does

not match reference PIN, ICC will decrease PIN Try counter, if customer PIN matches

reference PIN, transaction is allowed to continue. ICC will inform terminal the verification

result and terminal updates the status with user through updatePINstatus() method.

The following Java style pseudo code demonstrates the solution ideas:

public class PlaintextOfflinePINVerification

{

 // extract the PIN Try Counter number

 public int getPINTryCounter()

 {

 StringBuilder s = new StringBuilder();

 try{

 System.out.println("GETTING PIN TRY COUNTER");

 capdu = new ApduCmd("80 CA 9F 17 00");

59

 rapdu = se[0].execute(capdu);

 System.out.println("Try again with new length");

 capdu = new ApduCmd("80 CA 9F 17 04");

rapdu = se[0].execute(capdu);

 s = new StringBuilder(rapdu.toString());

 for (int i=0; i < s.length(); i++)

 if (s.charAt(i) == ' ')

 s.deleteCharAt(i);

 } catch (CardException e)

 {

System.out.println("Error when getting PIN try

counter!");

 }

 String st = s.toString();

return Integer.parseInt(st.substring(st.indexOf("9F17") + 6,

st.indexOf ("9F17") + 8));

 }

 // send PIN to ICC

 public boolean applyPINverification(String pin)

 {

 try{

 System.out.println("APPLYING VERIFY COMMAND");

 String command = "00 20 00 80 08 24" + pin;

 while (command.length() < 26) //14 + 12 = 26

 command += "F";

 System.out.println(command);

 capdu = new ApduCmd(command);

 rapdu = se[0].execute(capdu);

 if (rapdu.toString().substring(5, 10).equals("90 00"))

 return true;

 } catch (CardException e)

 {

 System.out.println("Error when sending PIN to ICC");

 }

 return false;

 }

public boolean checkVerificationCondition()

 {

 // check if users can go on with PIN verification

 }

60

 public void updatePINstatus()

 {

 // informs user if entered PIN matches or not

 }

}

8.2.8 Personalised information class

Table 14

Personalised information class

This Personalised information class provides methods to obtain personalised information

as described in table 14. This is public information needed to complete a transaction. All

of them can be accessed by their specific tags, for example, name on card is signalled by

tag ‘5F 20’, followed by the length of content and then the real content of cardholder

name. Because of the same access pattern, the following Java style pseudo code will

show the methods to obtain four public pieces of personalised information only including

name on card, card sixteen digits, BIC and IBAN.

The following Java style pseudo code demonstrates the solution ideas:

public class PersonalisedInformation

{

 public String nameOnCard()

 {

 // get Card Holder name, tag 5F 20

 if (st.indexOf("5F20") != -1)

 {

int nameLength = hexToDec (st.substring (st.indexOf

("5F20") + 4, st.indexOf("5F20") + 6));

nameOnCard = st.substring(st.indexOf("5F20") + 6,

st.indexOf("5F20") + 6 + nameLength * 2);

// covert the hexa string nameOnCard will give a

meaningful ASCII name

 nameOnCard = hexToASCII(nameOnCard);

 }

 return nameOnCard;

61

 }

 public String sixteenDigit()

 {

 // 16 digits

 index = st.indexOf("5A");

 if (index != -1)

 {

 sixteenDigit = st.substring(index + 4, index + 20);

 }

 return sixteenDigit;

 }

 public String BIC()

 {

 // get BIC, tag 5F 54

 if (st.indexOf("5F54") != -1)

 {

int nameLength = hexToDec(st.substring (st.indexOf

("5F54") + 4, st.indexOf("5F54") + 6));

BIC = st.substring(st.indexOf("5F54") + 6, st.indexOf

("5F54") + 6 + nameLength * 2);

 }

 }

 public String IBAN()

 {

 // get IBAN, tag 5F 53

 if (st.indexOf("5F53") != -1)

 {

int nameLength = hexToDec(st.substring(st.indexOf

("5F53") + 4, st.indexOf("5F53") + 6));

IBAN = st.substring(st.indexOf("5F53") + 6,

st.indexOf("5F53") + 6 + nameLength * 2);

 }

 }

}

8.2.9 Report generation class

Table 15

Report generation class

62

The Report generation class provides a facility to generate a user-readable report via its

methods as described in table 15. Sensitive information such as Credit Card number, PIN

number are handled with care and asterisk mark will be used to conserve information

integrity and prevent information to be reversed. Information is collected from a global

variable set by other classes throughout survey processes. Because of the similarity

amongst output procedures, only preliminary input information, payment applications,

card authentication and personalised information survey are displayed.

informationSantitise() method receives data from other facilities and dispose the stored

memory after generating a report for security reasons. Local information will be cleaned

automatically by Java garbage collector facility.

The following Java style pseudo code demonstrates the solution ideas:

public class ReportGeneration

{

 public void informationSanitise(String data)

 {

 // dispose used occupied memory by data

 }

public void generateReport()

 {

 PrintWriter f = new PrintWriter("report.txt");

 f.println("*** EMV card survey report");

f.println("Card is reseted, the ATR value returned is " +

atrValue);

 if (!cardManufacturer.isEmpty())

 f.println("Card manufacturer is "+cardManufacturer);

 else

 f.println("Cannot trace back card manufacturer");

 f.println("* *");

 f.println("* Card payment applications survey *");

 f.println("* *");

 f.println();

 f.println("Payment application folder exists in this card");

 if (numberOfApplications == 1)

f.println("There is only one payment application on

this card");

 else

f.println("There are " + numberOfApplications + "

payment applications on this card");

 f.println("The list of all payment applications:");

63

 f.println("- Application label is " + applicationLabel);

 f.println("- Application priority is " + applicationPriority);

 if (!applicationName.isEmpty())

f.println("- Application preferred name is " +

applicationName);

 if (!applicationLanguage.isEmpty())

f.println("- Application preferred language is " +

applicationLanguage);

 f.println("* *");

 f.println("* Card authentication methods survey *");

 f.println("* *");

 f.println();

 f.println("Card authentication methods checking: ");

 if (SDA)

 f.println("- Static data authentication is supported");

 else

f.println("- Static data authentication is NOT

supported");

 if (DDA)

f.println("- Dynamic data authentication is

supported");

 else

f.println("- Dynamic data authentication is NOT

supported");

 if (cDDA)

f.println("- Combined dynamic data authentication

and application cryptogram generation is supported");

 else

f.println("- Combined dynamic data authentication

and application cryptogram generation is NOT

supported");

 if (!CertificationAuthorityPublicKeyIndex.isEmpty())

f.println("- Certification Authority Public Key Index is "

+ CertificationAuthorityPublicKeyIndex);

 if (!IssuerPublicKeyCertificate.isEmpty())

f.println("- Issuer Public Key Certificate is " +

IssuerPublicKeyCertificate);

 if (!SignedStaticApplicationData.isEmpty())

f.println("- Signed Static Application Data is " +

SignedStaticApplicationData);

 if (!IssuerPublicKeyRemainder.isEmpty())

64

f.println("- Issuer Public Key Remainder is " +

IssuerPublicKeyRemainder);

 if (!IssuerPublicKeyExponent.isEmpty())

f.println("- Issuer Public Key Exponent is " +

IssuerPublicKeyExponent);

 f.println("* *");

 f.println("* Personalised information survey *");

 f.println("* *");

 f.println("Cardholder name is " + nameOnCard);

 f.println("Card type is " + cardType);

 // Hide away 8 digits of card for security reason

f.println("Card sixteen digits are " + sixteenDigit.substring(0,

4) + "****" + sixteenDigit.substring(8, 12) + "****");

f.println("This card is effective from " + beginDate + " / " +

beginMonth + " / " + beginYear);

f.println("This card will expire on " + expireDate + " / " +

expireMonth + " / " + expireYear);

 if (!BIC.isEmpty())

 f.println("The bank\\'s BIC is " + BIC);

 if (!IBAN.isEmpty())

 f.println("The bank\\'s IBAN is " + IBAN);

 f.close();

 }

}

8.2.10 Graphical User Interface class

Figure 25: Graphical User Interface class

This class provides user interface for software system. It inherits three standard Java

classes from Java library including JFrame and JPanel classes for buttons, labels, text

65

fields, text boxes display, ActionListener for mouse clicking event, text boxes triggers.

Figure 25 describes this class.

8.3 Data dictionary

This part gives a brief overview of the data type used in the software system.

 PaymentApplication: this data type stores information about a particular

payment application including label, priority, preferred name, and preferred

language.

 AuthenticationData: this data type stores information used for card

authentication procedure.

 VerificationData: this data type stores information used for cardholder

verification procedure.

 DateFormat: this data type stores information for expiry date and effective date

in dd/mm/yy format.

 String: this is standard Java data type representing a sequence of characters.

 int: this is standard Java data type representing an integer number.

 boolean: this is standard Java data type representing two logical value true or

false.

 PINTryCounterObject: this is special data type specified by ICC. It contains a

number specified how many times a PIN can be entered.

8.4 Java algorithm

This section describes the Java algorithm used throughout the solution to look into EMV

file system tree for application file and folder. This algorithm is described in more detail

in chapter 6 – EMV communication protocol construction.

The Algorithm we use above is called Depth First Search (DFS). This is the most efficient

algorithm used to traverse a Tree. As we know, EMV file system is viewed as a Tree, this is

the best approach.

The process will begin when we call Depth_First_Search_EMV(PSE folder). The Java style

pseudo code of the algorithm is as followed:

// Perform Depth First Search with folder root and index (AID or SFI)

Depth_First_Search_EMV(root MasterFile, integer index)

{

// perform SELECT command for this folder (root) with given AID

 SELECT(root, inde);

 // perform READ RECORD command for each record inside root

 READ_RECORD(root);

while (Status_Word != ’6A 83’) // keep repeating until no more

records found

 {

 Save_Record(record); // save this record into a list

66

// if an ADF is found, jump to that ADF (one-level deeper on

the tree)

 if (record == ADF)

 Depth_First_Search_EMV(record, AID);

 else

// if a DDF is found, jump to that DDF (one-level deeper on

the tree)

 if (record == DDF)

 Depth_First_Search_EMV(record, SFI);

 }

}

67

9. Software Testing

This chapter demonstrates the results of the physical tests carried out on the system

during testing phrase. The testing plan is systematically divided into four main parts -

 Black box testing: this type of testing considers each class of the program as a

black box. It tests every function and methods of each class based on its

attributes. This type of testing is called ‘black box’ since it only applies to input

forms and method signatures, it does not test internal structure of each class.

 White box testing: In contrast to black box testing, white box testing is executed

based on knowledge of the internal code of the program. The main advantage of

white box testing is the ease of fixing logical erroneous since each test case can

spot exactly what lines of code cause the problems. However, in return, for white

box testing to be continued, a thorough understanding of program source code is

required. It is also worth noting that any small alternation of code would require

an appropriate change to white box testing to reflect the modification.

 Integration testing: this testing uses bottom-up approach. The test cases are

carried out as the software is examined by user. Each methods of each class are

tested in the way data flows.

 System testing: this type of testing verifies the completed system against the

requirements and functionality to ensure it matches the specification. This type

of testing is similar to the way black box testing approaches. Internal structure of

the program is not considered.

68

9.1 Black box testing

Each black box test procedure contains three separate test cases: Normal test, Extreme test and Erroneous test. Normal test cases are easy tests,

assuming users following precisely what software specification has written. Stress tests concentrate on testing boundary input values. These are the

very maximum and very minimum input values software can handle. And finally, Erroneous tests challenges the software ability to handle unexpected

situations caused by user carelessness. Software system will be tested in a variety of circumstances when input data are totally wrong or inconsistent

with what have been written in specification.

Card input class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

1 void createNewSession() N/A as no data is parsed
through this method

A new session is created Test successful.
A new session is created

2 ATR resetSmartcard() N/A as no data is parsed
through this method

Smart card is reset and an
ATR sequence is returned

Test successful.
Smart card is reset and an
ATR sequence is returned

3 smartcardType
processATR(String ATR)

Normal:- ATR = “2A 07 0C 1C”

Extreme:- ATR = “” (empty
string)
 ATR = “48 55 4F 4E
47 20 ... 54 60 58 ” (256 bytes
in length)

Erroneous:- N/A

Normal:- processATR
function returns correct
smart card type

Extreme:- processATR
function returns correct
smart card type

Erroneous:- processATR

Test successful.
processATR function looks
up ATR sequence in
smart_card_list text file
and returns correct smart
card type if found.

69

function returns correct
smart card type

4 void prepareConnection() N/A as no data is parsed
through this method

A connection is created
between software system
and ICC

Test successful.
A connection is created
between software system
and ICC

Payment application class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

5 boolean
locatePaymentApplication()

N/A as no data parsed
through this method

This function returns ‘true’ if
a payment application is
found, or ‘false’ if no
payment application is
found.

Test successful

6 int
countNumberPaymentApplicat
ion()

N/A as no data parsed
through this method

This function returns total
number of payment
application found on card.

Test successful

7 PaymentApplication[]
listAllPaymentApplication()

N/A as no data parsed
through this method

This function returns a list of
all payment applications
found on card.

Test successful

70

Transaction initialisation class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

8 void
selectPaymentApplication()

N/A as no data parsed
through this method

This function selects
payment application with
highest priority.

Test successful

9 boolean initiateTransaction() N/A as no data parsed
through this method

This function returns ‘true’ if
a transaction is successfully
created, and ‘false’
otherwise.

Test successful

10 void prepareTerminalAndICC() N/A as no data parsed
through this method

This function configures
terminal to adapt to
conditions specified by ICC
in response to transaction
creation.

Test successful

Security protection class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

11 void checkStatusStatus() N/A as no data parsed
through this method

This function checks security
status of ICC and decides if
card authentication and

Test successful

71

cardholder verification will
be performed.

12 authenticationData
extractAuthentication()

N/A as no data parsed
through this method

This function returns
authentication data
retrieved from security data.

Test successful

13 verificationData
extractVerification()

N/A as no data parsed
through this method

This function returns
verification data retrieved
from security data.

Test successful

Card authentication class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

14 void authenticationStatus() N/A as no data parsed
through this method

This function updates the
status of three
authentication methods

Test successful

15 authenticationElement
SDADataElement()

N/A as no data parsed
through this method

This function returns SDA
data elements

Test successful

16 authenticationElement
DDADataElement()

N/A as no data parsed
through this method

This function returns DDA
data elements

Test successful

72

17 authenticationElement
cDDAElement()

N/A as no data parsed
through this method

This function returns cDDA
data elements

Test successful

Cardholder verification class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

18 void
cardholderVerificationStatus()

N/A as no data parsed
through this method

This function updates the
status of eight verification
methods

Test successful

19 []cardholderVerificationMetho
d
cardholderVerificationPriority()

N/A as no data parsed
through this method

This function returns the
priority order in which
verification methods are
applied in ICC.

Test successful

Plaintext offline PIN verification

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

20 PINTryCounterObject
getPINTryCounter()

N/A as no data parsed
through this method

This function obtains PIN Try
counter object from ICC.

Test successful

21 boolean
checkVerificationCondition()

N/A as no data parsed
through this method

This function returns ‘true’ if
offline PIN verification can

Test successful

73

be performed and ‘false’
otherwise.

22 void applyPINverification() N/A as no data parsed
through this method

This function collects PIN
from user and sends it clear
to ICC.

Test successful

23 void updatePINstatus() N/A as no data parsed
through this method

This function receives result
from ICC and update status
to inform user.

Test successful

Personalised information

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

24 String nameOnCard() N/A as no data parsed
through this method

This function displays
cardholder name.

Test successful

25 String cardType(String
carddigit)

N/A as no data parsed
through this method

This function displays card
type.

Test successful

26 String sixteenDigit() N/A as no data parsed
through this method

This function displays
sixteen card digit.

Test successful

27 DateFormat expireDate() N/A as no data parsed This function retrieves and Test successful

74

through this method returns card expire date.

28 DateFormat effectiveDate() N/A as no data parsed
through this method

This function retrieves and
returns card effective date.

Test successful

29 String BIC() N/A as no data parsed
through this method

This function retrieves and
returns BIC number.

Test successful

30 String IBAN() N/A as no data parsed
through this method

This function retrieves and
returns IBAN number.

Test successful

Report generation

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

31 void informationSanitise(String
data)

Normal:- data =
“4967908712456543”

Extreme:- N/A

Erroneous:- N/A

Normal:- data =
“4967****1245****”

Extreme:- N/A

Erroneous:- N/A

Test successful

32 void generateReport() N/A as no data parsed
through this method

This function generates a
text report.

Test successful

75

9.2 White box testing

Each white box test case has three following subtests -

 Condition testing: this sub-test finds all IF statements within the program, and ensures the true/false values are correct.

 Loop testing: this sub-test locates all loops (FOR loop, WHILE loop, DO-WHILE loop) in the program, makes sure they run precisely the number

of times they are designed to run, spotting infinite loops.

 Logic testing: this sub-test verifies that all methods and functions execute in a way developers intend.

Card input class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

1 Method resetSmartcard Normal:- System is asked to
reset a NatWest MasterCard.

Normal:- resetSmartcard()
returns sequence ‘3B 6E 00
00 00 31 C0 71 C6 65 01 B0
01 03 37 83 90 00’

Test successful

2 Method processATR Normal:- System is asked to
returns card vendor based on
ATR sequence of NatWest
MasterCard

Normal:- processATR()
returns ‘NatWest United
Kingdom’

Test successful

76

Payment application class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

3 Method
locatePaymentApplication

Normal:- System is asked to
locate payment application
folder on a NatWest
MasterCard

Erroneous:- System is asked
to locate payment application
folder on a Vietcombank
debit card

Normal:-
locatePaymentApplication()
returns ‘true’

Erroneous:-
locatePaymentApplication()
returns ‘false’

Test successful

4 Method
countNumberPaymentApplicat
ion

Normal:- System is asked to
count how many payment
application existing on a
NatWest MasterCard

Normal:-
countNumberPaymentAppli
cation() return 1

Test successful

5 Method
listAllPaymentApplication

Normal:- System is asked to
return a list of all payment
applications on a NatWest
MasterCard

Normal:-
listAllPaymentApplication()
returns [Application name:
SOLO, Application priority:
1]

Test successful

77

Transaction initialisation class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

6 Method
selectPaymentApplication

Normal:- System is asked to
select a payment application
on a HSBC VISA

Normal:- the FOR loop in
selectPaymentApplication()
goes through payment
application list once, and
application with highest
priority is selected.

Test successful

7 Method initiateTransaction Normal:- System is asked to
initiate an EMV transaction

Normal:-
initiateTransaction() returns
‘true’

Test successful

Cardholder verification class

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

8 Method
cardholderVerificationPriority

Normal:- System is asked to
return a list of cardholder
verification methods of a
NatWest MasterCard in
priority order.

Normal:- functions returns
1.Plaintext offline PIN
verification
2. Signature verification only
3.Enciphered online PIN
verification
4. No cardholder verification
needed

Test successful

78

Plaintext offline PIN verification

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

9 Method
checkVerificationCondition

Normal:- System is asked if
plaintext offline PIN
verification can be performed
on HSBC VISA card.

Normal:-
checkVerificationCondition()
returns ‘true’

Test successful

10 Method applyPINverification Normal:- System is asked to
apply PIN ‘1234’ with HSBC
VISA card

Normal:-
applyPINverification() apply
PIN in the correct order. PIN
Try counter object is
obtained firstly, then all
conditions must be satisfied
before PIN will be sent to
ICC.

Test successful

Personalised information

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

11 Method nameOnCard Normal:- NatWest card
owner ‘Khuong Nguyen’ puts
his card in reader, and uses
system to obtain information.

Normal:- nameOnCard()
returns ‘Khuong Nguyen’

Test successful

79

12 String cardType(String
carddigit)

Normal:- Sixteen card digits
‘6767456716013478’ is
passed through cardType()

Normal:- cardType() returns
‘SOLO’

Test successful

13 Method sixteenDigit Normal:- a NatWest
MasterCard is inserted into
reader and user wants to
obtain sixteen digits on card.

Normal:- sixteenDigit()
returns‘6767456716013478’

Test successful

14 DateFormat expireDate() Normal:- a NatWest
MasterCard with expiry date
11/10 is inserted into reader.

Normal:- expireDate()
returns ‘30 / November /
2010’

Test successful

15 DateFormat effectiveDate() Normal:- a NatWest
MasterCard with effective
date 11/07 is inserted into
reader.

Normal:- effectiveDate()
returns ‘01 / November /
2007’

Test successful

80

9.3 Integration testing

Integration testing uses bottom-up approach. The test cases are carried out as the software is examined by user. Each methods of each class are tested

in the way data flows.

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

1 System initialises new session
with smart card reader and
processes inserted ICC
preliminary information.

User inserts a NatWest EMV
card into smart card reader,
and presses ‘Insert card’
button.

Card input class runs
createNewSession()
method, resetSmartcard()
method returns an ATR
sequence and processATR()
method processes this
sequence.

Test successful. All
functions are executed
properly in their orders.

2 System initialises new session
with smart card reader and
processes inserted ICC
preliminary information.

User inserts a Vietcombank
card into smart card reader,
and presses ‘Insert card’
button.

Card input class runs
createNewSession()
method, resetSmartcard()
method returns an ATR
sequence and processATR()
method processes this
sequence.

Test successful. All
functions are executed
properly in their orders.

3 System looks into ICC for
payment application folder

User presses ‘Locate payment
application’ button, with
NatWest card inserted.

Payment application class
executes
locatePaymentApplication()
method to verify payment
application folder. Then,
countNumberPaymentAppli

Test successful. All
functions are executed
properly in their orders.

81

cation() method is run to
count how many payment
applications inside.

4 System looks into ICC for
payment application folder

User presses ‘Locate payment
application’ button, with
Vietcombank card inserted.

Payment application class
executes
locatePaymentApplication()
method to verify payment
application folder. Then,
countNumberPaymentAppli
cation() method is run to
count how many payment
applications inside.

Test failure.
System informs no
payment application has
been found. This is because
Vietcombank card is not
EMV card.

5 System looks into payment
application folder and lists all
payment applications inside
with their information

User presses ‘List all’ button Payment application class
executes
listAllPaymentApplication()
method and a list of all
payment applications is
returned. At the same time,
their information are shown
on the interface.

Test successful. All
functions are executed
properly in their orders.

6 System creates a new EMV
transaction

User presses ‘Initiate
transaction’ button

Transaction initialisation
class receives the list of
payment applications from
Payment application class.
Then,
selectPaymentApplication()

Test successful. All
functions are executed
properly in their orders.

82

method is executed to select
the payment application
with highest priority and
initiateTransaction() method
create the new transaction.

7 System updates the
authentication status of three
card authentication methods

User presses ‘Analyse’ button
under Card Authentication
tab

Card authentication class
runs authenticationStatus()
method and updates SDA
status to supported and
DDA, cDDA statuses to NOT
supported.

Test successful. All
functions are executed
properly in their orders.

8 System shows all data
elements belonging to static
offline data authentication

User presses ‘Static Data
Authentication’ button

Card authentication class
runs SDADataElement()
method and retrieves all
possible data elements

Test successful. All
functions are executed
properly in their orders.

9 System shows all data
elements belonging to dynamic
offline data authentication

User presses ‘Dynamic Data
Authentication’ button

Card authentication class
runs DDADataElement()
method and retrieves all
possible data elements

Test successful. All
functions are executed
properly in their orders.

10 System shows all data
elements belonging to
combined dynamic data
authentication/application
cryptogram generation.

User presses ‘Combined
DDA/Cryptogram’ button

Card authentication class
runs cDDADataElement()
method and retrieves all
possible data elements

Test successful. All
functions are executed
properly in their orders.

11 System updates the
verification status of eight

User presses ‘Analyse’ button
under Cardholder Verification

Cardholder verification class
runs

Test successful. All
functions are executed

83

cardholder verification
methods

category cardholderVerificationStatus
() method and updates eight
methods’ status.

properly in their orders.

12 System launches a new
interface, which simulates an
ATM keypad for user to
perform offline PIN verification

User presses ‘PIN verification’
button

Plaintext offline PIN
verification class is called. A
separated interface is
created to perform offline
PIN verification

Test successful. Plaintext
offline PIN verification
interface is displayed.

13 System collects preliminary
information from ICC to begin
offline PIN verification process

User presses ‘Initialise’
button under Offline PIN
verification category

Plaintext offline PIN
verification class runs
getPINTryCounter() method
to obtain PIN Try counter
object, and checks the
verification condition before
allowing user to enter PIN.

Test successful. All
functions are executed
properly in their orders.

14 System sends user PIN clear to
ICC for verification

User presses ‘ENTER’ button
under Offline PIN verification
category

Plaintext offline PIN
verification class runs
applyPINVerification()
method to send the PIN
clear to ICC.

Test successful. All
functions are executed
properly in their orders.

15 System erased wrongly
entered PIN and allows user to
re-enter

User presses ‘CLEAR’ button
under Offline PIN verification
category

PIN is clear on screen. Test successful. PIN is clear
from screen.

16 System terminates current
offline PIN verification process.

User presses ‘CANCEL’ button
under Offline PIN verification
category

Plaintext offline PIN
verification class is exited.

Test successful. Plaintext
offline PIN verification class
is exited.

84

 System displays all
personalised information
found in ICC

User presses ‘Get
personalised data’ button

Personalised information
class executes all functions
to query personalised
information from ICC.

Test successful. All
personalised information
are displayed on screen.

17 System auto-generates a user-
friendly report, using collected
information during the survey

User presses ‘Generate
report’ button under File
menu

Report generation class gets
information obtained
throughout the survey
process and creates a text
report.

Test successful. A text
report is generated
properly.

9.4 System testing

System testing verifies the completed system against the requirements and functionality to ensure it matches the specification. This type of testing is

similar to the approach of black box testing. Internal structure of the program is not considered.

TEST
ID

DESCRIPTION TEST DATA EXPECTED OUTCOME ACTUAL OUTCOME

1 EMV card is inserted and card
vendor is traced back

User inserts an HSBC debit
card into smart card reader,
and presses ‘Insert card’
button.

Card vendor is returned as
‘HSBC United Kingdom’

Test successful

2 EMV card is inserted and card
vendor is traced back

User inserts a Vietcombank
card into smart card reader,
and presses ‘Insert card’
button.

Card vendor is returned as
‘Vietcombank Vietnam’

Test failure.
System does not display
any vendor information.

85

3 No process is performed when
there is no card resided in
smart card reader

User does not insert any card
in smart card reader, and
presses ‘Insert card’ button to
obtain preliminary
information.

Card status does not change
from ‘Waiting for card’.
Nothing happens.

Test successful

4 A session must be started
before any other
functionalities can be
performed

‘Analyse’ button, or ‘Locate
payment application’ button,
or ‘Initiate transaction’
button, or ‘Get personalised
data’ button is pressed
before ‘Insert card’ button

System refuses to perform
the intended function, since
no session between ICC and
reader has been established
yet.

Test failure.
System crashes and a
CardIO exception is
thrown.

5 An EMV transaction must be
created before card
authentication, or cardholder
verification, or PIN verification
can be performed

‘Analyse’ button, or ‘PIN
verification’ button, or ‘Get
personalised data’ button is
pressed before ‘Initiate
transaction’ button

System refuses to perform
the intended function, since
no EMV transaction was
created. An attempt to get
information from ICC will be
refused by ICC.

Test failure.
System does not crash but
no information is returned.

6 Card is cold-ejected by user in
the middle of procedure

User inserts card into reader,
and performs all steps
normally until a transaction is
initialised. Then, user hard-
ejected the card without
notifying the system. Then

System recognises the
missing of ICC in the middle
of the process and
terminates the current
session.

Test failure.
System’s behaviours are
unexpected and depend on
which combination of
buttons user press.

86

user continues to operate the
system by analysing card
authentication information.

7 User inputs wrong PIN number
two continuous times

The correct PIN of card is
‘1234’. User enters PIN
‘1111’, then PIN ‘2222’.

System informs in red colour
at status bar that ‘There is
only one time left to input
PIN’.

Test successful

8 User inputs wrong PIN number
three continuous times

The correct PIN of card is
‘1234’. User enters PIN
‘1111’, then PIN ‘2222’, then
PIN ‘3333’.

System informs in red colour
at status bar that ‘No more
PIN tries is allowed’ and
system does not send PIN
verification instruction to
ICC any more, even user
asks to.

Test successful

9 Card has been blocked, and
user still tries to enter PIN

At the moment, card does
not allow any PIN tries (PIN
Try counter number is zero).
User still enters PIN ‘1234’.

System does not send PIN to
ICC and informs user no
more PIN tries is allowed.

Test successful

10 Transaction is forced to finish
early

User presses ‘CANCEL’ button
in the middle of transaction.

System terminates current
transaction and ejects the
card

Test successful

87

11 User just inputs 3-digit PIN and
wants to starts over again

User presses ‘CLEAR’ button. System erases screen and
allows user to re-enter new
PIN

Test successful

12 User inputs too short or too
long PIN

User inputs PIN ‘12’ or PIN
‘0123456789000’ and press
‘ENTER’ button

System does not accept PIN
with less than 4 digits or
more than 12 digits. User is
prompted to re-try.

Test successful

88

 9.5 System testing failures analysis

This part explains four test failures found in system testing. Each failed test case will be

analysed and fixed -

- Test case 2: The reason system does not display any information about card vendor

as smartcard_list text file does not cover Vietcombank card. This issue can be fixed by

adding Vietcombank ATR to exception list to be handed separately by the program.

- Test case 4: System crashes since no session between ICC and software terminal is

established. From a programmer perspective, this problem can be fixed by adding a

boolean flag to ‘Insert card’ button. When this button is pressed, flag value is

updated to ‘true’. And before performing any analysis operations, software system

checks the flag value first. However, this will slow down the system a little since it

always has to check the flag value.

- Test case 5: System crashes since no EMV transaction has been initialised. This

problem is similar to test case 4, and can be fixed in the same manner by adding

another boolean flag to ‘Initiate transaction’ button.

- Test case 6: System can either crash or returns meaningless information, depending

on which combination of buttons user presses after cold-ejecting the card. This issue

is a bit tough to fix from the operator’s perspective since there is no flag indictor in

either terminal or ICC to indicate the current state of ICC. However, since the

software system does not know when user will suddenly eject the card, therefore it

requires an indicator boolean flag for every single operation of the project. This is

obviously not reasonable, since it will massively slow down the whole system. Thus

for the time being, only important operations such as card authentication analysis

request, and cardholder verification analysis request will have an indicator flag.

89

10. Experimental results

This chapter shows text results obtained by using ‘Generate report’ function of the

software on four different UK Chip and PIN cards manufactured by NatWest, HSBC,

Barclays, Abbey, and two international cards from Vietnam and Thailand.

10.1 NatWest card survey

*** EMV card survey report 1

Card is reset, the ATR value returned is 3B 6E 00 00 00 31 C0 71 C6 65 01 B0 01 03 37 83

90 00

Card manufacturer is NatWest United Kingdom

*

* Card payment applications survey *

*

Payment application folder exists in this card

There is only one payment application on this card

The list of all payment applications:

- Application label is SOLO

- Application priority is 01

*

* Card authentication methods survey *

*

Card authentication methods checking:

- Static data authentication is supported

- Dynamic data authentication is NOT supported

- Combined dynamic data authentication and application cryptogram generation is NOT

supported

The data element for static data authentication found on this card:

- Certification Authority Public Key Index is 800

90

70 81 C0 8F 01 04 9F 32 01 03 92 24 A4 3C EF 04 93 DB 55 39 4A 49 27 94 5B 5D 0E 46 9E

50 29 37 80 D1 C8 19 ED BC A3 8B 8C DB 09 F3 04 91 61 45 90 81 90 9B 66 2E 7B 1D DC

C3 B1 14 17 35 31 2A 01 75 D9 38 AA 8C 84 53 38 3D 0F F7 9A 76 82 5D 0E EC 31 50 58 7D

7C 5D 78 8B 60 72 6B B4 13 AE E4 1D 14 A9 B0 A6 3F 0E 17 D8 B0 49 A1 A5 6F BB 2B F8

1C 37 80 78 39 68 05 A9 37 56 C2 FE A4 58 2A 70 0A 89 C4 1C 76 E8 D9 6F 06 57 0C A6 5F

FD E3 99 A9 96 11 03 1C 94 69 8B ED A8 10 CF 00 1D 9A 8D FE 87 1A 80 89 D9 AC 2C 20

CD 20 B9 E3 FA 0B 9A 53 D4 48 33 36 DC 62 48 DD B7 A6 C3 64 E2 17 9A 70 23 5F 20 0B

4D 52 20 4B

- Issuer Public Key Certificate is

90 9B 66 2E 7B 1D DC C3 B1 14 17 35 31 2A 01 75 D9 38 AA 8C 84 53 38 3D 0F F7 9A 76

82 5D 0E EC 31 50 58 7D 7C 5D 78 8B 60 72 6B B4 13 AE E4 1D 14 A9 B0 A6 3F 0E 17 D8

B0 49 A1 A5 6F BB 2B F8 1C 37 80 78 39 68 05 A9 37 56 C2 FE A4 58 2A 70 0A 89 C4 1C 1C

76 E8 D9 6F 06 57 0C A6 5F FD E3 99 A9 96 11 03 1C 94 69 8B ED A8 10 CF 00 1D 9A 8D FE

87 1A 80 89 D9 AC 2C 20 CD 20 B9 E3 FA 0B 9A

- Issuer Public Key Remainder is

A4 3C EF 04 93 DB 55 39 4A 49 27 94 5B 5D 0E 46 9E 50 29 37 80 D1 C8 19 ED BC A3 8B

8C DB 09 F3 04 91 61 45

- Issuer Public Key Exponent is 03

*

* Cardholder verification methods survey *

*

Verification methods checking:

- Plaintext offline verification Plaintext is supported. This method is performed if terminal

supports this method

- Enciphered online PIN verification is supported. This method is performed if terminal

supports this method

- Plaintext offline PIN and signature is NOT supported.

- Enciphered offline PIN verification is NOT supported.

- Enciphered offline PIN and signature is NOT supported.

- Signature verification only is supported. This method is performed if terminal supports

this method

- No cardholder verification needed is supported. This method is performed if terminal

supports this method

The priority order of CVM in this card is:

1. Plaintext offline PIN verification

91

2. Signature verification only

3. Enciphered online PIN verification

4. No cardholder verification needed

*

* Personalised information survey *

*

Cardholder name is MR K NGUYEN

Card type is SOLO

Card sixteen digits are 6767****1601****

This card is effective from 01 / November / 2007

This card will expire on 30 / November / 2010

10.2 HSBC card survey

*** EMV card survey report 2

Card is reset, the ATR value returned is 3B 6E 00 00 00 31 C0 71 D6 65 94 E8 03 40 00 83

90 00

Card manufacturer is HSBC United Kingdom

*

* Card payment applications survey *

*

Payment application folder exists in this card

There is only one payment application on this card

The list of all payment applications:

- Application label is SOLO

- Application priority is 01

*

* Card authentication methods survey *

*

92

Card authentication methods checking:

- Static data authentication is supported

- Dynamic data authentication is NOT supported

- Combined dynamic data authentication and application cryptogram generation is NOT

supported

The data element for static data authentication found on this card:

- Certification Authority Public Key Index is C5 F2 01

- Issuer Public Key Certificate is

90 A1 CE B7 C3 09 54 6A 4F AD B2 CA 61 3E 94 62 61 83 68 9A 68 0E B3 7C E8 68 DF BC 78

59 CC F3 B3 1F E9 F2 CE 51 D9 C4 C1 AD 57 30 8B 30 B8 8B 12 4E 73 2F 96 07 DA EE 30 1D

6D 19 B6 53 85 22 44 78 2C 93 68 DA 5F 66 C8 95 F7 AB 2F 1B D0 72 EE 0B 34 30 EF DC 1C

09 4C 6B 06 F7 B0 A7 63 AD 62 BC 05 DC 67 A5 4B 4F 35 73 65 BE EA 33 B8 5F 4D F6 EB

2A 53 10 5B 98 7A 56 64 C6 80 E2 93 41 A7

*

* Cardholder verification methods survey *

*

Verification methods checking:

- Plaintext offline verification Plaintext is supported. This method is performed if terminal

supports this method

- Enciphered online PIN verification is supported. This method is performed if terminal

supports this method

- Plaintext offline PIN and signature is NOT supported.

- Enciphered offline PIN verification is NOT supported.

- Enciphered offline PIN and signature is NOT supported.

- Signature verification only is supported. This method is performed if terminal supports

this method

- No cardholder verification needed is supported. This method is performed if terminal

supports this method

The priority order of CVM in this card is:

1. Plaintext offline PIN verification

2. Signature verification only

3. Enciphered online PIN verification

4. No cardholder verification needed

93

*

* Personalised information survey *

*

Cardholder name is SRICHAIYONGPANICH/N.MR

Card type is SOLO

Card sixteen digits are 6767****0232****

This card is effective from 11 / October / 2008

This card will expire on 31 / March / 2010

10.3 Abbey (Santander) card survey

*** EMV card survey report 3

Card is reset, the ATR value returned is 3B 6E 00 00 00 31 C0 65 54 B6 01 00 84 71 D6 8C

61 31

Card manufacturer is Abbey United Kingdom

*

* Card payment applications survey *

*

Payment application folder exists in this card

There is only one payment application on this card

The list of all payment applications:

- Application label is MASTERCARD

- Application priority is 01

*

* Card authentication methods survey *

*

Card authentication methods checking:

94

- Static data authentication is supported

- Dynamic data authentication is NOT supported

- Combined dynamic data authentication and application cryptogram generation is NOT

supported

The data element for static data authentication found on this card:

- Issuer Public Key Certificate is

91 F9 F1 F0 D3 13 53 73 93 23 03 03 93 03 13 83 93 17 04 B5 F2 50 30

*

* Cardholder verification methods survey *

*

Verification methods checking:

- Plaintext offline verification Plaintext is supported. This method is performed if terminal

supports this method

- Enciphered online PIN verification is supported. This method is performed if terminal

supports this method

- Plaintext offline PIN and signature is NOT supported.

- Enciphered offline PIN verification is NOT supported.

- Enciphered offline PIN and signature is NOT supported.

- Signature verification only is supported. This method is performed if terminal supports

this method

- No cardholder verification needed is supported. This method is performed if terminal

supports this method

The priority order of CVM in this card is:

1. Enciphered online PIN verification

2. Plaintext offline PIN verification

3. Signature verification only

4. No cardholder verification needed

*

* Personalised information survey *

*

Cardholder name is MAMMERI/AMINA

95

Card type is MasterCard

Card sixteen digits are 5454****7818****

This card is effective from 01 / February / 2007

This card will expire on 28 / February / 2010

10.4 Barclays card survey

*** EMV card survey report 4

Card is reset, the ATR value returned is 3B 6E 00 00 00 31 C0 71 C6 65 01 B0 01 03 37 83

90 00

Card manufacturer is Barclays United Kingdom

*

* Card payment applications survey *

*

Payment application folder exists in this card

There is only one payment application on this card

The list of all payment applications:

- Application label is VISA DEBIT

- Application priority is 01

*

* Card authentication methods survey *

*

Card authentication methods checking:

- Static data authentication is supported

- Dynamic data authentication is NOT supported

- Combined dynamic data authentication and application cryptogram generation is NOT

supported

The data element for static data authentication found on this card:

- Issuer Public Key Certificate is 70 F9 F1 F0 D3 13 23 53 33 43 03 03 93 03 13 13 73

96

*

* Cardholder verification methods survey *

*

Verification methods checking:

- Plaintext offline verification Plaintext is supported. This method is performed if terminal

supports this method

- Enciphered online PIN verification is supported. This method is performed if terminal

supports this method

- Plaintext offline PIN and signature is NOT supported.

- Enciphered offline PIN verification is NOT supported.

- Enciphered offline PIN and signature is NOT supported.

- Signature verification only is supported. This method is performed if terminal supports

this method

- No cardholder verification needed is supported. This method is performed if terminal

supports this method

The priority order of CVM in this card is:

1. Enciphered online PIN verification

2. Plaintext offline PIN verification

3. Signature verification only

4. Enciphered online PIN verification

5. No cardholder verification needed

*

* Personalised information survey *

*

Cardholder name is TYE/LINDA

Card type is VISA DEBIT

Card sixteen digits are 4659****1281****

This card is effective from 31 / December / 2008

This card will expire on 01 / April / 2012

10.5 Thai Bank of Ayudhya card survey

*** EMV card survey report 5

Card is reset, the ATR value returned is 3B 6E 00 00 00 31 C0 71 86 65 01 78 01 27 34 83

90 00

97

Cannot trace back card manufacturer

*

* Card payment applications survey *

*

Payment application folder exists in this card

There is only one payment application on this card

The list of all payment applications:

- Application label is VISA CREDIT

- Application priority is 01

*

* Card authentication methods survey *

*

Card authentication methods checking:

- Static data authentication is supported

- Dynamic data authentication is NOT supported

- Combined dynamic data authentication and application cryptogram generation is NOT

supported

The data element for static data authentication found on this card:

- Certification Authority Public Key Index is 07

- Issuer Public Key Certificate is

7D 11 08 20 10 00 00 59 28 76 54 F7 04 C5 F2 50 30 60 80 15 F2 40 31 10 82 15 A0 84 55

20 51 00 00 90 72 75 F3 40 10 19 2F 07 02 FF 00 8E 0E 00 00 00 00 00 00 00 00 1E 03 02

03 1F 00 9F 0D 05 F0 58 8C 88 00 9F 0E 05 00 00 00 00 00 9F 0F 05 F0 78 8C 98 00 5F 28

02 07 64 70 81 96 8F 01 07 90 81 90 7E 4E FC 2E 2F 7F 15 CD F9 50 15 4E FD 4E F9

- Issuer Public Key Remainder is

65 4F 70 4C 5F 25 03 06 08 01 5F 24 03 11 08 21 5A 08 45 52 05 10 00 09 07 27 5F 34 01

01 9F 07 02 FF 00 8E 0E 00 00 00 00 00 00 00 00 1E 03 02 03 1F 00 9F 0D 05 F0 58 8C 88

00 9F 0E 05 00 00 00 00 00 9F 0F 05 F0 78 8C 98 00 5F 28 02 07 64 70 81 96 8F 01 07 90

81 90 7E 4E FC 2E 2F 7F 15 CD F9 50 15 4E FD 4E F3 CC 2F 68 23 61 61 FC 22 93 A8 BD 45

77 F0 98 95 A0 B8 9F 46 F7 3B C4 18 E8 5D 97 BF D2 A8

98

*

* Cardholder verification methods survey *

*

Verification methods checking:

- Plaintext offline verification Plaintext is NOT supported.

- Enciphered online PIN verification is supported. This method is performed if terminal

supports this method

- Plaintext offline PIN and signature is NOT supported.

- Enciphered offline PIN verification is NOT supported.

- Enciphered offline PIN and signature is NOT supported.

- Signature verification only is supported. This method is performed if terminal supports

this method

- No cardholder verification needed is supported. This method will always be performed

The priority order of CVM in this card is:

1. Signature verification only

2. Enciphered online PIN verification

3. No cardholder verification needed

*

* Personalised information survey *

*

Cardholder name is MR.N/SRICHAIYONG

Card type is VISA

Card sixteen digits are 4559****0009****

This card is effective from 01 / August / 2007

This card will expire on 21 / August / 2012

10.6 Vietnam Vietcombank card survey

*** EMV card survey report 6

Card is reset, the ATR value returned is 3B 6D 00 00 80 31 80 65 B0 84 01 00 C8 83 00 90

00

Cannot trace back card manufacturer

99

*

* Card payment applications survey *

*

There is no payment application folder existing on this card

There is no payment application on this card

*

* Card authentication methods survey *

*

Cannot perform card authentication

*

* Cardholder verification methods survey *

*

Cannot perform cardholder verification

*

* Personalised information survey *

*

Personalised information cannot be retrieved

10.7 Survey analysis

This section provides an overall comment about the results obtained above. Based on the

features of each card in real life, the correctness of the system can be verified.

Firstly, it is interesting to see all UK EMV cards only have one payment application at the

moment, although the card can accommodate many payment applications. Interestingly,

the payment application label is the card type itself. For example, a Santander

MasterCard has payment application label names MASTERCARD.

100

Secondly, it can be concluded from all four UK Chip and PIN reports that all UK cards do

support both card authentication and cardholder verification. However, for card

authentication, at the moment only static data authentication is supported. None of UK

bank cards support dynamic data authentication. For cardholder verification, none of UK

bank cards supports enciphered offline PIN verification. However, all UK cards support

plaintext offline PIN verification, enciphered online PIN verification and signature

verification. It can be concluded that UK bank cards do provide both online and offline

facilities for verification procedures.

Of the two international cards, there are quite many differences in the report of

cardholder verification methods. For the Thai bank card, the report shows that it only

support enciphered online PIN verification and signature verification. No PIN verification

is supported at all as the report indicated. Since Thailand does not implement PIN facility

yet, and the surveyed Thai card is a signature one, the report information is hence

correct. Finally, the Vietcombank report does not show any information apart from ATR

sequence. This is understandable since Vietcombank card is not an EMV card. An attempt

to locate payment application was not successful, hence no survey could be obtained.

101

 11. Conclusion and future work

This chapter summaries the project and proposes possible work to implement in the

future. Initially, the chapter gives the project writer a chance to self-evaluate the project

development. Next, all difficulties encountered at each project development stage, as

well as experience gained after completing this project are discussed in subsequent

sections. The most important aspect after the project is finished is what the project

writer has critically learned by doing this project. This is discussed in the next section.

Finally, the chapter concludes by a list of plans for future investigation.

11.1 Project self-evaluation

This section gives a self-review of the project under the project writer’s perspective when

it is concluded. Firstly, it is worth reminding electronic payment has dramatically changed

the way humans spend money in public places. Instead of carrying a wallet full of bank

notes and coins, nowadays people only have to carry a piece of plastic which contains all

the needed information to spend in stores. Not only does electronic payment increase

the speed of transactions since shop sellers do not have to give small changes to

customers, but it also increases the security of transactions since all money is transferred

directly behind the scene from bank to bank. However, a loss of bank card can result in a

loss of all money stored in an account. Thus the need of a more secure protection

mechanism for those plastic cards is increasingly demand. EMV has provided a great

standard for secure electronic payment system. However, as the trend of business, a

demand for better protection in the future can be foreseen. Late 2009s saw the first

introduction of contactless EMV which even speeds up the transaction by terminating the

need to insert bank card into readers. Information can be transported in the air, thus

providing ease of access, yet at the same time demanding new security protection. This

project was executed to prepare the project writer with sufficient knowledge to do

further research in electronic payment area.

Firstly, because of a feature of an information security project, three crucial security

objectives are always guaranteed for the project through-out project development. They

are -

 Confidentiality: a guarantee that sensitive information on EMV Card including

personal detailed information does not get into wrong hands.

Confidentiality can be exploited by reading the card report generated by the

software program, and use of information such as cardholder name, sixteen

digits, expiry date, and effective date for online payment. However, the software

makes sure that this sensitive information is hidden by asterisk mark, and will not

be reversed easily.

 Integrity: a guarantee that all data retrieved from Card are manipulated and

stored correctly. Software system will prevent the card from being damaged in

critical situation such as user deliberately enters three wrong PIN to block the

card, in such case.

 Availability: a guarantee that software system should always work and be able to

access information from Card when needed.

102

Secondly, the project has demonstrated fully and correctly all six project objectives

mentioned in chapter 3.3. Upon completion of the project, a majority of EMV knowledge

has been fully understood by the project writer. These include how card authentication

and cardholder verification work, as well as how to implement offline PIN verification.

These details are basis for any electronic payment systems, furthermore they provide a

good foundation to implement an actual merchant terminal in the future. Finally, the

project writer has a good experience on experimenting with real life bank cards and sees

how the banks organise their information. The list of possible future work is scheduled to

make sure of the possibility of project expansion in the future.

11.2 Project difficulties and solutions

This section explained what difficulties have been encountered when this project was

developing at each development stage. Each stage is followed by a solution approach. For

a full description of each development stage, refer to chapter 3.4.

11.2.1 Requirements analysis stage

- Problem

The hardest challenge at this early stage is to decide what programming language is to be

used to write software system. The decision must take into the account the existing

hardware, and the ease of access to the system.

- Solution

C++ and Java were the two possibilities since they are both taught in undergraduate

course. Java was chosen because of the vast majority of supported library and the ease of

access to PC/SC framework and Smart card resource manager provided under Windows

operating system.

11.2.2 Research stage

- Problem

The major development issue with EMV was the lack of available resources. At the time

this project was concluded (12-March-2010), there were only three EMV-related books

on sale on Amazon UK. Two of them (O’Mahony and Haddad’s) contained very little

useful information about EMV for this project

 O'Mahony, D., et al, Electronic Payment Systems for E-commerce, Artech House,

2001.

 Haddad, A., A New Way to Pay: Creating Competitive Advantage Through the

EMV Smart Card Standard, Gower Publishing, 2005.

 Radu, C., Implementing Electronic Card Payment Systems, Artech House, 2002.

- Solution

Most theories conducted in this project are collected directly from four EMV specification

books, ISO 7816-4 standard, MasterCard documentation, along with various online

103

articles and blogs. However, the information is sparse and not united, as they come from

many different online sources, thus making it harder for this development stage.

11.2.3 Modelling stage

- Problem

The hardest obstacle in this stage is to decide what functionalities to include in the

system, and how to design them.

- Solution

Class Responsibility Collaborator cards (CRC cards) produced handwritten from scratch

provides a useful approach to design all functionalities and the relationship amongst

them.

11.2.4 Coding stage

- Problem

The biggest challenge at this stage was to make the smart card reader and smart card to

communicate with each other, and write the first ‘hello word’ program.

- Solution

Many sources were used to aid this early stage, after two entities can communicate with

each other, the rest of the procedure can be built on.

11.2.5 Testing stage

- Problem

It was difficult to collect a variety of UK Chip and PIN cards to perform testing and it is

understandable that most testing failures relate to the fact different banks organise their

cards differently. A list of all test cases is documented in chapter 9.

- Solution

Minor tweaks are performed for each bank. An example of such tweak: All early HSBC

cards which expire early in 2010 are recognised as ‘First Direct UK VISA Debit’ based on

ATR smart card list, while all new HSBC cards issued after 2009 are properly recognised as

‘HSBC UK Debit Card’. This issue can be fixed by adding this ATR string to an exception

list.

11.2.6 Documenting stage

- Problem

The hardest obstacle to produce a good formal report is how to organise the ideas in a

fluent readable way, and how to make the report look formal.

- Solution

104

As a diary log is maintained since the first day the project was begun, it helps to keep

track of where the ideas come from and organise them in a scientific way. Word style,

theme and layout erroneous are fixed upon suggestions by project supervisor.

11.3 Experience gained

A variety of experiences and skills have been learned by project designer upon

completing the project. Initially, in order to propose with the EMV topic, project writer

must do some research, not only because the topic is utterly new for undergraduate

student, but the Chip and PIN aspect are not new in the United Kingdom. This process

provides project proposers skills to perform independent research under guidelines from

project supervisor. Furthermore, as the nature of a theoretical analysis project, many

information under hexadecimal byte and bit from need to be analysed, thus preparing

project writer with some information analysis skill, which is not only useful for EMV

analysis, but also helpful for other analysis areas too. Secondly, since one of the

achievements of the project is the practical software, which independently demands

software development skills to be used, hence the waterfall model has been studied and

applied to guarantee the best approach for software development. And, as the project

utilises some hardware equipment, which makes it stand out from a normal pure

software project. Software development process must take into account the existing of

hardware features and make sure they communicate nicely with each other as a united

system. Thirdly, what makes the project interesting is the chance to use the system with

real life EMV Chip and PIN cards in the United Kingdom. This investigation process gives

project designer a specific in-depth experience at how EMV is implemented in real life.

Finally, in order to produce this project report, a numerous skill of Microsoft Word and

report writing skill has been learned, thus in the end, a fluent and formal report can be

produced.

11.4 Future work

This section outlined some unfinished work which could not be achieved in time because

of time constraints and limited available resources.

- A VISA or MasterCard public key would help to perform certificate verification,

however, these public keys are only issued to banks, and are almost kept secret from

individuals.

- Further study into EMV contactless cards as they are increasing in industry demand.

Barclays and Abbey have recently issued EMV contactless cards for their customers.

However, to implement contactless feature, a contactless reader is required.

- Further work to create a full secure working terminal, which operates as secure as

real merchant terminal in stores. This operation requires a further in-depth look into

terminal risk management function performed by terminal.

Therefore, all in this project has shown the profound nature of EMV cards and their

structure on the retail environment and indicated areas where future work would benefit

all parties for the common good - retailers, consumers and financiers.

105

Appendix A: Software manual

This section provides a user-friendly manual for the users who are unfamiliar with

technical details to execute this system.

There are four basic steps to run this project

 Step 1: Hardware preparation

Connect PC/SC SmartCard Device to Personal Computer via USB or Serial Port.

For all Windows environments, Device will be set up automatically by ‘SmartCard

Resource Manager’ included in the Operating System. No driver installations are

needed. A small Light Detector on Device will flash to signal Device is ready to use

Insert EMV SmartCard into Reader Device slot, notice the contact surface

between ICC and Reader

 Step 2: Software preparation

Install Java Runtime Environment: http://java.sun.com/

Install JACCAL: http://jaccal.sourceforge.net/

 Step 3: Software executing

Execute EMVSmartCardReader Java class. A graphic user interface will show up

with all instructions.

For Card Input tab, presses the ‘Insert Card’ button to begin a new working

session. The status bar should reads ‘Card is ready for access’

For Payment Application tab, the user can check if there is a payment application

on card by pressing the ‘Locate payment application’ button. Furthermore, by

pressing ‘List all’ button, all relevant information about payment applications are

http://java.sun.com/
http://jaccal.sourceforge.net/

106

listed. Finally, the ‘Initiate transaction’ button will create an EMV transaction

between software reader and ICC. The status will be updated accordingly.

The next two tabs – Card authentication and Cardholder verification allows the

user to survey information of the two protection mechanisms. By pressing the

‘Analyse’ button, the statuses of those methods will change to either ‘supported’

or ‘NOT supported’. Under Cardholder verification tab, there is another ‘PIN

verification’ button which launches a separate window to perform real offline PIN

verification procedure

The user can enter PIN with both provided PIN pad and keyboard. The software

was programmed to capture inputs from both devices. If the user mistypes his

PIN, it can be reset by pressing the ‘CLEAR’ button. For security purposes,

entered PIN will be displayed in asterisk mark, although the real PIN is saved by

the software. By pressing the ‘ENTER’ button, the programme will performed PIN

verification and result is informed to the user in the status bar. Finally, by

pressing the ‘CANCEL’ button, current transaction will be finished.

The final tab – Personalised information provides information which was hard-

coded during personalised stage of card manufacturing. And finally, the user can

choose to export all surveyed information onto a text file with ‘Report

generation’ option provided under File menu.

107

 Step 4: Software closing

Each new smart card requires a new session to be created. However, it is not

possible for the software itself to detect the existence or disappearance of smart

card in reader device. User must manually tell software that a new inserted ICC

needs to be recognised.

108

Appendix B: Full source code listing
 EMVSoftwareReader.java

import com.jaccal.*;

import com.jaccal.command.*;

import com.jaccal.util.*;

import javax.swing.*;

import javax.swing.border.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class EMVSoftwareReader extends JFrame implements ActionListener

{

 JMenuItem item2 = new JMenuItem("About");

 JMenuItem item4 = new JMenuItem("Save report");

 static String AID = "";

 static SessionFactory f;

 static Session [] se;

 static ApduCmd capdu;

 static CardResponse rapdu;

// main EMV reader will set those values, then GUI will read them

and display

 static String atrValue = "";

 static String cardManufacturer = "";

 static String cardLanguage = "";

 static String cardType = ""; // application label

 static String accountNumber = "";

 static String nameOnCard = "";

 static String sixteenDigit = "";

 static String expireYear = "";

 static String expireMonth = "";

 static String expireDate = "";

 static String beginYear = "";

 static String beginMonth = "";

 static String beginDate = "";

 static String AFL = "";

 static String BIC = "";

 static String IBAN = "";

 /// SDA data element

 static String CertificationAuthorityPublicKeyIndex = "";

 static String IssuerPublicKeyCertificate = "";

 static String SignedStaticApplicationData = "";

109

 static String IssuerPublicKeyRemainder = "";

 static String IssuerPublicKeyExponent = "";

 /// DDA data element

 static String ICCPublicKeyCertificate = "";

 static String ICCPublicKeyExponent = "";

 static String ICCPublicKeyRemainder = "";

 /// CVM

 static String Plaintext_offline_PIN_verification = "NOT supported";

 static String Enciphered_online_PIN_verification = "NOT supported";

static String Plaintext_offline_PIN_and_signature = "NOT

supported";

static String Enciphered_offline_PIN_verification = "NOT

supported";

static String Enciphered_offline_PIN_and_signature = "NOT

supported";

 static String Signature_verification_only = "NOT supported";

 static String No_cardholder_verification_needed = "NOT supported";

 //CVM condition

 static String cPlaintext_offline_PIN_verification = "";

 static String cEnciphered_online_PIN_verification = "";

 static String cPlaintext_offline_PIN_and_signature = "";

 static String cEnciphered_offline_PIN_verification = "";

 static String cEnciphered_offline_PIN_and_signature = "";

 static String cSignature_verification_only = "";

 static String cNo_cardholder_verification_needed = "";

 // flag to determine the order of CVM

 static String first = "";

 static String second = "";

 static String third = "";

 static String fourth = "";

 static String fifth = "";

 static String sixth = "";

 static String seventh = "";

 /// application

 static String applicationLabel = "";

 static String applicationName = "";

 static String applicationPriority = "";

 static String applicationLanguage = "";

 static int numberOfApplications = 0;

 static boolean transaction = false;

 /// boolean flag

110

 static boolean SDA = false, DDA = false, cDDA = false, CVM = false;

 // constructor

 public EMVSoftwareReader()

 {

 JTabbedPane table = new JTabbedPane();

 table.addTab("Card Input", new InputForm());

 table.addTab("Payment Application", new applicationForm());

 table.addTab("Card Authentication", new camForm());

 table.addTab("Cardholder Verification", new cvmForm());

table.addTab("Personalised information", new

personalForm());

 JMenuBar menuBar = new JMenuBar();

 JMenu menu = new JMenu("File");

 JMenu menu1 = new JMenu("Help");

 menuBar.add(menu);

 menuBar.add(menu1);

 JMenuItem item1 = new JMenuItem("Exit");

 menu.add(item4);

 menu.add(item1);

 menu1.add(item2);

 ClickListener1 cl1 = new ClickListener1();

 item1.addActionListener(cl1);

 item2.addActionListener(this);

 item4.addActionListener(this);

 this.setJMenuBar(menuBar);

 this.add(table);

 this.setTitle("EMV Software Reader");

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setSize(700, 650);

 this.setLocationRelativeTo(null);

 this.setVisible(true);

 }

 public void actionPerformed(ActionEvent e)

 {

 if (e.getSource() == item2)

 JOptionPane.showMessageDialog(this, "Programmed

by Khuong Nguyen\nSupervised by Prof. Chris Mitchell", "EMV Software

Reader", 1);

 else

 if (e.getSource() == item4)

 {

111

 generateReport();

 JOptionPane.showMessageDialog(null, "Report has

been generated!", "Report generation", 2);

 }

 }

 class ClickListener1 implements ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 System.exit(0);

 }

 }

 /*

 * Card Authentication Methods form

 */

 class camForm extends JPanel implements ActionListener

 {

 JPanel p1 = new JPanel();

 JPanel p2 = new JPanel();

 JPanel p3 = new JPanel();

 JPanel p4 = new JPanel();

 JPanel p5 = new JPanel();

 JPanel p6 = new JPanel();

 JPanel p7 = new JPanel();

 JPanel p8 = new JPanel();

 JPanel p9 = new JPanel();

 JPanel p10 = new JPanel();

 JPanel p11 = new JPanel();

 JPanel p12 = new JPanel();

 JPanel p13 = new JPanel();

 JPanel p14 = new JPanel();

 JPanel p15 = new JPanel();

 JPanel p16 = new JPanel();

 JPanel container = new JPanel();

 JButton bAnalyse = new JButton("Analyse");

 JButton bSDA = new JButton("Static Data Authentication");

 JButton bDDA = new JButton("Dynamic Data

Authentication");

 JButton bCDA = new JButton("Combined DDA/Cryptogram");

 JLabel l1 = new JLabel("Static Data Authentication ");

 JLabel l2 = new JLabel("Dynamic Data Authentication ");

 JLabel l3 = new JLabel("Combined DDA/Application

cryptogram generation ");

112

 JLabel l4 = new JLabel("-

- -");

 // SDA

 JLabel l5 = new JLabel("Certification Authority Public Key

Index ");

 JLabel l6 = new JLabel("Issuer Public Key Certificate

");

 JLabel l7 = new JLabel("Signed Static Application Data

");

 JLabel l8 = new JLabel("Issuer Public Key Remainder

");

 JLabel l9 = new JLabel("Issuer Public Key Exponent

");

 JLabel l10 = new JLabel("ICC Public Key Certificate

");

 JLabel l11 = new JLabel("ICC Public Key Exponent

");

 JLabel l12 = new JLabel("ICC Public Key Remainder

");

 JTextField tx1 = new JTextField(10); //

 JTextField tx2 = new JTextField(10); //

 JTextField tx3 = new JTextField(10); //

 JTextField tx4 = new JTextField(30); //

 JTextField tx5 = new JTextField(30); //

 JTextField tx6 = new JTextField(30); //

 JTextField tx7 = new JTextField(30); //

 JTextField tx8 = new JTextField(30); //

 JTextField tx9 = new JTextField(30); //

 JTextField tx10 = new JTextField(30); //

 JTextField tx11 = new JTextField(30); //

 JTextField tx12 = new JTextField(30); //

 public camForm()

 {

 this.setLayout(new GridLayout(14, 1));

 this.add(p1); this.add(p2); this.add(p3);

this.add(p4); this.add(p5); this.add(p6);

 this.add(p8); this.add(p10); this.add(p9);

this.add(p11); this.add(p12); this.add(p13);

 this.add(p14); this.add(p15);

 p1.add(bAnalyse);

 p1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bAnalyse.addActionListener(this);

113

 p2.add(l1); p2.add(tx1);

 tx1.setEditable(false);

 p2.setLayout(new FlowLayout(FlowLayout.LEFT));

 p3.add(l2); p3.add(tx2);

 tx2.setEditable(false);

 p3.setLayout(new FlowLayout(FlowLayout.LEFT));

 p4.add(l3); p4.add(tx3);

 tx3.setEditable(false);

 p4.setLayout(new FlowLayout(FlowLayout.LEFT));

 p5.add(l4);

 p5.setLayout(new FlowLayout(FlowLayout.CENTER));

 p6.add(bSDA);

 bSDA.addActionListener(this);

 p6.add(bDDA);

 bDDA.addActionListener(this);

 p6.add(bCDA);

 bCDA.addActionListener(this);

 p6.setLayout(new FlowLayout(FlowLayout.CENTER));

 /// for SDA

 p8.add(l5); p8.add(tx4);

 p8.setLayout(new FlowLayout(FlowLayout.LEFT));

 p9.add(l6); p9.add(tx5);

 p9.setLayout(new FlowLayout(FlowLayout.LEFT));

 p10.add(l7); p10.add(tx6);

 p10.setLayout(new FlowLayout(FlowLayout.LEFT));

 p11.add(l8); p11.add(tx7);

 p11.setLayout(new FlowLayout(FlowLayout.LEFT));

 p12.add(l9); p12.add(tx8);

 p12.setLayout(new FlowLayout(FlowLayout.LEFT));

 p13.add(l10); p13.add(tx9);

 p13.setLayout(new FlowLayout(FlowLayout.LEFT));

 p14.add(l11); p14.add(tx10);

 p14.setLayout(new FlowLayout(FlowLayout.LEFT));

 p15.add(l12); p15.add(tx11);

 p15.setLayout(new FlowLayout(FlowLayout.LEFT));

 }

 public void actionPerformed(ActionEvent e)

 {

 if (e.getSource() == bAnalyse)

 {

 if (SDA == true)

 tx1.setText("supported");

114

 else

 tx1.setText("NOT supported");

 if (DDA == true)

 tx2.setText("supported");

 else

 tx2.setText("NOT supported");

 if (cDDA == true)

 tx3.setText("supported");

 else

 tx3.setText("NOT supported");

 }

 else

 if (e.getSource() == bSDA)

 {

 getSDAdata();

 tx4.setText(display(CertificationAuthorityPublicKeyIndex));

 tx5.setText(display(IssuerPublicKeyCertificate));

 //tx6.setText(SignedStaticApplicationData);

 tx7.setText(display(IssuerPublicKeyRemainder));

 tx8.setText(display(IssuerPublicKeyExponent));

 }

 else

 if (e.getSource() == bDDA || e.getSource() ==

bCDA)

 {

 getDDAdata();

 tx4.setText(display(CertificationAuthorityPublicKeyIndex));

 tx5.setText(display(IssuerPublicKeyCertificate));

 //tx6.setText(SignedStaticApplicationData);

 tx7.setText(display(IssuerPublicKeyRemainder));

 tx8.setText(display(IssuerPublicKeyExponent));

 }

 }

 }

 // retrieve needed element for SDA authentication

 public void getSDAdata()

 {

 int index, length;

115

 // get CertificationAuthorityPublicKeyIndex, tag 8F

 index = AFL.indexOf("8F");

 if (index != -1)

 {

 //index = AFL.indexOf("8F", index + 1);

 length = hexToDec(AFL.substring(index + 2, index +

4));

 System.out.println(length);

 //System.out.println(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 CertificationAuthorityPublicKeyIndex =

AFL.substring(index + 4, index + 4 + length * 2);

 }

 // get Issuer Public Key Certificate, tag 90

 index = AFL.indexOf("90");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyCertificate = AFL.substring(index + 4,

index + 4 + length * 2);

 }

 //Signed Static Application Data, tag 93

 index = AFL.indexOf("93");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 SignedStaticApplicationData = AFL.substring(index +

4, index + 4 + length * 2);

 }

 // Issuer Public Key Remainder, tag 92

 index = AFL.indexOf("92");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyRemainder = AFL.substring(index + 4,

index + 4 + length * 2);

 }

116

 // Issuer Public Key Exponent, tag '9F32'

 index = AFL.indexOf("9F32");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 4, index +

6));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyExponent = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 }

 public void getDDAdata()

 {

 int index, length;

 // get CertificationAuthorityPublicKeyIndex, tag 8F

 index = AFL.indexOf("8F");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 CertificationAuthorityPublicKeyIndex =

AFL.substring(index + 4, index + 4 + length * 2);

 }

 // get Issuer Public Key Certificate, tag 90

 index = AFL.indexOf("90");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyCertificate = AFL.substring(index + 4,

index + 4 + length * 2);

 }

 // Issuer Public Key Remainder, tag 92

 index = AFL.indexOf("92");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyRemainder = AFL.substring(index + 4,

index + 4 + length * 2);

117

 }

 // Issuer Public Key Exponent, tag '9F32'

 index = AFL.indexOf("9F32");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 4, index +

6));

 // multiple 2 since it is 2 bytes per hexa

 IssuerPublicKeyExponent = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 // ICC Public Key Certificate, tag '9F46'

 index = AFL.indexOf("9F46");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 4, index +

6));

 // multiple 2 since it is 2 bytes per hexa

 ICCPublicKeyCertificate = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 // ICC Public Key Exponent, tag '9F47'

 index = AFL.indexOf("9F47");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 4, index +

6));

 // multiple 2 since it is 2 bytes per hexa

 ICCPublicKeyExponent = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 //ICC Public Key Remainder, tag '9F48'

 index = AFL.indexOf("9F48");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 4, index +

6));

 // multiple 2 since it is 2 bytes per hexa

 ICCPublicKeyRemainder = AFL.substring(index + 6,

index + 6 + length * 2);

 }

 }

118

 /*

 * Cardholder Verification Methods form

 */

 class cvmForm extends JPanel implements ActionListener

 {

 JPanel p1 = new JPanel();

 JPanel p2 = new JPanel();

 JPanel p3 = new JPanel();

 JPanel p4 = new JPanel();

 JPanel p5 = new JPanel();

 JPanel p6 = new JPanel();

 JPanel p7 = new JPanel();

 JPanel p8 = new JPanel();

 JPanel p9 = new JPanel();

 JPanel p10 = new JPanel();

 JPanel p11 = new JPanel();

 JPanel p12 = new JPanel();

 JPanel p13 = new JPanel();

 JPanel p14 = new JPanel();

 JPanel p15 = new JPanel();

 JPanel p16 = new JPanel();

 JPanel p17 = new JPanel();

 JPanel p18 = new JPanel();

 JPanel p19 = new JPanel();

 JPanel p20 = new JPanel();

 JButton bAnalyse = new JButton("Analyse");

 JButton bPIN = new JButton("PIN verification");

 JLabel l1 = new JLabel("Status");

 JLabel l2 = new JLabel("Plaintext offline PIN verification

");

 JLabel l3 = new JLabel("Enciphered online PIN verification

");

 JLabel l4 = new JLabel("Plaintext offline PIN and signature

");

 JLabel l5 = new JLabel("Enciphered offline PIN verification

");

 JLabel l6 = new JLabel("Enciphered offline PIN and signature

");

 JLabel l7 = new JLabel("Signature verification only

");

 JLabel l8 = new JLabel("No cardholder verification needed

");

 JLabel c2 = new JLabel("");

119

 JLabel c3 = new JLabel("");

 JLabel c4 = new JLabel("");

 JLabel c5 = new JLabel("");

 JLabel c6 = new JLabel("");

 JLabel c7 = new JLabel("");

 JLabel c8 = new JLabel("");

 JLabel order1 = new JLabel("");

 JLabel order2 = new JLabel("");

 JLabel order3 = new JLabel("");

 JLabel order4 = new JLabel("");

 JLabel order5 = new JLabel("");

 JLabel order6 = new JLabel("");

 JLabel order7 = new JLabel("");

 JTextField tx1 = new JTextField(20); //

 JTextField tx2 = new JTextField(8); //

 JTextField tx3 = new JTextField(8); //

 JTextField tx4 = new JTextField(8); //

 JTextField tx5 = new JTextField(8); //

 JTextField tx6 = new JTextField(8); //

 JTextField tx7 = new JTextField(8); //

 JTextField tx8 = new JTextField(8); //

 JLabel text = new JLabel("Click on button to perform

plaintext offline PIN verification");

 JLabel text1 = new JLabel("The priority order of CVM in this

card");

 JLabel line = new JLabel("-

- -");

 public cvmForm()

 {

 this.setLayout(new GridLayout(19, 1));

 this.add(p1); this.add(p2); this.add(p3);

this.add(p4); this.add(p5); this.add(p6); this.add(p7); this.add(p8);

this.add(p9);

 this.add(p13);

 p1.add(bAnalyse);

 p1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bAnalyse.addActionListener(this);

 p2.add(tx1);

 tx1.setEditable(false);

 p2.setLayout(new FlowLayout(FlowLayout.CENTER));

120

 p3.add(l2); p3.add(tx2); p3.add(c2);

 p3.setLayout(new FlowLayout(FlowLayout.LEFT));

 p4.add(l3); p4.add(tx3); p4.add(c3);

 p4.setLayout(new FlowLayout(FlowLayout.LEFT));

 p5.add(l4); p5.add(tx4); p5.add(c4);

 p5.setLayout(new FlowLayout(FlowLayout.LEFT));

 p6.add(l5); p6.add(tx5); p6.add(c5);

 p6.setLayout(new FlowLayout(FlowLayout.LEFT));

 p7.add(l6); p7.add(tx6); p7.add(c6);

 p7.setLayout(new FlowLayout(FlowLayout.LEFT));

 p8.add(l7); p8.add(tx7); p8.add(c7);

 p8.setLayout(new FlowLayout(FlowLayout.LEFT));

 p9.add(l8); p9.add(tx8); p9.add(c8);

 p9.setLayout(new FlowLayout(FlowLayout.LEFT));

 ////////////////// Priority order

 p13.add(text1);

 p13.setLayout(new FlowLayout(FlowLayout.CENTER));

 //if (!first.isEmpty())

 {

 this.add(p14);

 p14.add(order1);

 p14.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!second.isEmpty())

 {

 this.add(p15);

 p15.add(order2);

 p15.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!third.isEmpty())

 {

 this.add(p16);

 p16.add(order3);

 p16.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!fourth.isEmpty())

 {

121

 this.add(p17);

 p17.add(order4);

 p17.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!fifth.isEmpty())

 {

 this.add(p18);

 p18.add(order5);

 p18.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!sixth.isEmpty())

 {

 this.add(p19);

 p19.add(order6);

 p19.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 //if (!seventh.isEmpty())

 {

 this.add(p20);

 p20.add(order7);

 p20.setLayout(new

FlowLayout(FlowLayout.LEFT));

 }

 ///////////////////

 ////////////////// PIN verification form

 //this.add(p12);

 this.add(p10); this.add(p11);

 p10.add(bPIN);

 bPIN.addActionListener(this);

 p10.setLayout(new FlowLayout(FlowLayout.CENTER));

 p11.add(text);

 p11.setLayout(new FlowLayout(FlowLayout.CENTER));

 p12.add(line);

 p12.setLayout(new FlowLayout(FlowLayout.CENTER));

 }

 public void actionPerformed(ActionEvent e)

 {

 if (e.getSource() == bAnalyse)

 {

122

 if (CVM == true)

 tx1.setText("Cardholder verification is

supported");

 else

 // no need to perform any more CVM analysis

since ICC does not support it

 {

 tx1.setText("Cardholder verification is

NOT supported");

 return;

 }

 // analyse CVM information

 CVManalyse();

 // set cvm

 tx2.setText(Plaintext_offline_PIN_verification);

 tx3.setText(Enciphered_online_PIN_verification);

 tx4.setText(Plaintext_offline_PIN_and_signature);

 tx5.setText(Enciphered_offline_PIN_verification);

 tx6.setText(Enciphered_offline_PIN_and_signature);

 tx7.setText(Signature_verification_only);

 tx8.setText(No_cardholder_verification_needed);

 // set condition rule

 c2.setText(cPlaintext_offline_PIN_verification);

 c3.setText(cEnciphered_online_PIN_verification);

 c4.setText(cPlaintext_offline_PIN_and_signature);

 c5.setText(cEnciphered_offline_PIN_verification);

 c6.setText(cEnciphered_offline_PIN_and_signature);

 c7.setText(cSignature_verification_only);

 c8.setText(cNo_cardholder_verification_needed);

 // set priority order

 if (!first.isEmpty()) order1.setText("1. " +

first);

 if (!second.isEmpty()) order2.setText("2. " +

second);

123

 if (!third.isEmpty()) order3.setText("3. " +

third);

 if (!fourth.isEmpty()) order4.setText("4. " +

fourth);

 if (!fifth.isEmpty()) order5.setText("5. " +

fifth);

 if (!sixth.isEmpty()) order6.setText("6. " +

sixth);

 if (!seventh.isEmpty()) order7.setText("7. " +

seventh);

 }

 else

 if (e.getSource() == bPIN)

 {

 new EMVPINVerification();

 }

 }

 }

 // analyse CVM information

 public void CVManalyse()

 {

 String CVR = "", rule = "", condition = "";

 int index, length;

 // get CertificationAuthorityPublicKeyIndex, tag 8E

 index = AFL.indexOf("8E");

 if (index != -1)

 {

 length = hexToDec(AFL.substring(index + 2, index +

4));

 // multiple 2 since it is 2 bytes per hexa

 CVR = AFL.substring(index + 4, index + 4 + length *

2);

 // ignore the first 8 bytes of X and Y

 CVR = CVR.substring(16);

 }

 //42 01 41 03 1E 03 02 03 1F 03

 index = 0;

 while (index < CVR.length())

 {

 rule = CVR.substring(index, index + 2);

 condition = CVR.substring(index + 2, index + 4);

 // convert to 8 bit binary & trim the 6 bit right most

 rule = hexToBin(rule).substring(2);

124

 if (condition.equals("00"))

 condition = "will always be performed";

 else

 if (condition.equals("01"))

 condition = "is performed if unattended cash";

 else

 if (condition.equals("02"))

 condition = "is performed if not unattended

cash, not manual cash and not purchase with cashback";

 else

 if (condition.equals("03"))

 condition = "is performed if terminal supports

this method";

 else

 if (condition.equals("04"))

 condition = "is performed if customer pays

with manual cash";

 else

 if (condition.equals("05"))

 condition = "is performed if transaction with

cashback";

 else

 condition = "";

 if (rule.equals("000001"))

 {

 Plaintext_offline_PIN_verification =

"supported";

 cPlaintext_offline_PIN_verification = condition;

 if (first.isEmpty()) first = "Plaintext offline PIN

verification";

 else

 if (second.isEmpty()) second = "Plaintext

offline PIN verification";

 else

 if (third.isEmpty()) third = "Plaintext offline

PIN verification";

 else

 if (fourth.isEmpty()) fourth = "Plaintext offline

PIN verification";

 else

 if (fifth.isEmpty()) fifth = "Plaintext offline PIN

verification";

 else

 if (sixth.isEmpty()) sixth = "Plaintext offline

PIN verification";

 else

125

 if (seventh.isEmpty()) seventh = "Plaintext

offline PIN verification";

 }

 else

 if (rule.equals("000010"))

 {

 Enciphered_online_PIN_verification =

"supported";

 cEnciphered_online_PIN_verification =

condition;

 if (first.isEmpty()) first = "Enciphered online

PIN verification";

 else

 if (second.isEmpty()) second = "Enciphered

online PIN verification";

 else

 if (third.isEmpty()) third = "Enciphered online

PIN verification";

 else

 if (fourth.isEmpty()) fourth = "Enciphered

online PIN verification";

 else

 if (fifth.isEmpty()) fifth = "Enciphered online

PIN verification";

 else

 if (sixth.isEmpty()) sixth = "Enciphered online

PIN verification";

 else

 if (seventh.isEmpty()) seventh = "Enciphered

online PIN verification";

 }

 else

 if (rule.equals("000011"))

 {

 Plaintext_offline_PIN_and_signature =

"supported";

 cPlaintext_offline_PIN_and_signature =

condition;

 if (first.isEmpty()) first = "Plaintext offline PIN

and signature";

 else

 if (second.isEmpty()) second = "Plaintext

offline PIN and signature";

 else

 if (third.isEmpty()) third = "Plaintext offline

PIN and signature";

 else

126

 if (fourth.isEmpty()) fourth = "Plaintext offline

PIN and signature";

 else

 if (fifth.isEmpty()) fifth = "Plaintext offline PIN

and signature";

 else

 if (sixth.isEmpty()) sixth = "Plaintext offline

PIN and signature";

 else

 if (seventh.isEmpty()) seventh = "Plaintext

offline PIN and signature";

 }

 else

 if (rule.equals("000100"))

 {

 Enciphered_offline_PIN_verification =

"supported";

 cEnciphered_offline_PIN_verification =

condition;

 if (first.isEmpty()) first = "Enciphered offline

PIN verification";

 else

 if (second.isEmpty()) second = "Enciphered

offline PIN verification";

 else

 if (third.isEmpty()) third = "Enciphered offline

PIN verification";

 else

 if (fourth.isEmpty()) fourth = "Enciphered

offline PIN verification";

 else

 if (fifth.isEmpty()) fifth = "Enciphered offline

PIN verification";

 else

 if (sixth.isEmpty()) sixth = "Enciphered offline

PIN verification";

 else

 if (seventh.isEmpty()) seventh = "Enciphered

offline PIN verification";

 }

 else

 if (rule.equals("000101"))

 {

 Enciphered_offline_PIN_and_signature =

"supported";

 cEnciphered_offline_PIN_and_signature =

condition;

127

 if (first.isEmpty()) first = "Enciphered offline

PIN and signature";

 else

 if (second.isEmpty()) second = "Enciphered

offline PIN and signature";

 else

 if (third.isEmpty()) third = "Enciphered offline

PIN and signature";

 else

 if (fourth.isEmpty()) fourth = "Enciphered

offline PIN and signature";

 else

 if (fifth.isEmpty()) fifth = "Enciphered offline

PIN and signature";

 else

 if (sixth.isEmpty()) sixth = "Enciphered offline

PIN and signature";

 else

 if (seventh.isEmpty()) seventh = "Enciphered

offline PIN and signature";

 }

 else

 if (rule.equals("011110"))

 {

 Signature_verification_only = "supported";

 cSignature_verification_only = condition;

 if (first.isEmpty()) first = "Signature

verification only";

 else

 if (second.isEmpty()) second = "Signature

verification only";

 else

 if (third.isEmpty()) third = "Signature

verification only";

 else

 if (fourth.isEmpty()) fourth = "Signature

verification only";

 else

 if (fifth.isEmpty()) fifth = "Signature

verification only";

 else

 if (sixth.isEmpty()) sixth = "Signature

verification only";

 else

 if (seventh.isEmpty()) seventh = "Signature

verification only";

 }

 else

128

 if (rule.equals("011111"))

 {

 No_cardholder_verification_needed =

"supported";

 cNo_cardholder_verification_needed =

condition;

 if (first.isEmpty()) first = "No cardholder

verification needed";

 else

 if (second.isEmpty()) second = "No cardholder

verification needed";

 else

 if (third.isEmpty()) third = "No cardholder

verification needed";

 else

 if (fourth.isEmpty()) fourth = "No cardholder

verification needed";

 else

 if (fifth.isEmpty()) fifth = "No cardholder

verification needed";

 else

 if (sixth.isEmpty()) sixth = "No cardholder

verification needed";

 else

 if (seventh.isEmpty()) seventh = "No

cardholder verification needed";

 }

 index += 4;

 }

 }

 /*

 * Personal information form

 */

 class personalForm extends JPanel implements ActionListener

 {

 JPanel p1 = new JPanel();

 JPanel p2 = new JPanel();

 JPanel p3 = new JPanel();

 JPanel p4 = new JPanel();

 JPanel p5 = new JPanel();

 JPanel p6 = new JPanel();

 JPanel p7 = new JPanel();

 JPanel p8 = new JPanel();

 JButton bInit = new JButton("Get personalised data");

129

 JLabel l1 = new JLabel("Name on card ");

 JLabel l2 = new JLabel("Sixteen digits ");

 JLabel l3 = new JLabel("Expire date ");

 JLabel l4 = new JLabel("Effective date ");

 JLabel l5 = new JLabel("Card type ");

 JLabel l6 = new JLabel("BIC ");

 JLabel l7 = new JLabel("IBAN ");

 JTextField tx1 = new JTextField(20); // name on card

 JTextField tx2 = new JTextField(20); // 16 digits

 JTextField tx3 = new JTextField(20); // expire month

 JTextField tx4 = new JTextField(20); // expire year

 JTextField tx5 = new JTextField(20); // card type

 JTextField tx6 = new JTextField(20); // bic

 JTextField tx7 = new JTextField(20); // iban

 public personalForm()

 {

 this.setLayout(new GridLayout(8, 2));

 this.add(p1); this.add(p2); this.add(p7);

this.add(p3); this.add(p4); this.add(p5); this.add(p6); this.add(p8);

 p1.add(bInit);

 p1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bInit.addActionListener(this);

 p2.add(l1); p2.add(tx1);

 p2.setLayout(new FlowLayout(FlowLayout.LEFT));

 p3.add(l2); p3.add(tx2);

 p3.setLayout(new FlowLayout(FlowLayout.LEFT));

 p4.add(l3); p4.add(tx3);

 p4.setLayout(new FlowLayout(FlowLayout.LEFT));

 p5.add(l4); p5.add(tx4);

 p5.setLayout(new FlowLayout(FlowLayout.LEFT));

 p7.add(l5); p7.add(tx5);

 p7.setLayout(new FlowLayout(FlowLayout.LEFT));

 p6.add(l6); p6.add(tx6);

 p6.setLayout(new FlowLayout(FlowLayout.LEFT));

 p8.add(l7); p8.add(tx7);

 p8.setLayout(new FlowLayout(FlowLayout.LEFT));

 }

130

 public void actionPerformed(ActionEvent e)

 {

 // collect personal information

 if (e.getSource() == bInit)

 {

 getPersonalInformation(AFL);

 tx1.setText(nameOnCard);

 tx2.setText(sixteenDigit);

 tx3.setText(expireDate + " / " + expireMonth

+ " / " + expireYear);

 tx4.setText(beginDate + " / " + beginMonth +

" / " + beginYear);

 tx5.setText(cardType);

 tx6.setText(BIC);

 tx7.setText(IBAN);

 }

 }

 }

 class applicationForm extends JPanel implements ActionListener

 {

 JPanel p1 = new JPanel();

 JPanel p2 = new JPanel();

 JPanel p3 = new JPanel();

 JPanel p4 = new JPanel();

 JPanel p5 = new JPanel();

 JPanel p6 = new JPanel();

 JPanel p7 = new JPanel();

 JPanel p8 = new JPanel();

 JPanel p9 = new JPanel();

 JPanel p10 = new JPanel();

 JPanel p11 = new JPanel();

 JPanel p12 = new JPanel();

 JPanel p13 = new JPanel();

 JPanel p14 = new JPanel();

 JButton bStart = new JButton("Locate payment application");

 // verify payment application existence

 JButton bList = new JButton("List all"); // List all payment

applications on card

 JButton bTransaction = new JButton("Initiate transaction");

 JLabel appNum = new JLabel("Number of payment

application");

131

 JLabel line = new JLabel("-

- -");

 JLabel line1 = new JLabel("-

- -");

 JLabel text1 = new JLabel("Check if there is payment

application on card");

 JLabel text2 = new JLabel("Initiate an EMV transaction with

ICC");

 JLabel l3 = new JLabel("Application label ");

 JLabel l4 = new JLabel("Application priority ");

 JLabel l5 = new JLabel("Preferred language ");

 JLabel l6 = new JLabel("Preferred name ");

 JTextField tx1 = new JTextField(15); // status

 JTextField tx2 = new JTextField(3); // for number of

applications

 JTextField tx3 = new JTextField(13); // application label

 JTextField tx4 = new JTextField(13); // priority

 JTextField tx5 = new JTextField(13); // language

 JTextField tx6 = new JTextField(13); // name

 JTextField tx7 = new JTextField(25); // transaction

status

 public applicationForm()

 {

 this.setLayout(new GridLayout(14, 2));

 this.add(p1); this.add(p3); this.add(p14);

this.add(p4); this.add(p6); this.add(p5); this.add(p7); this.add(p8);

 this.add(p9); this.add(p10); this.add(p2);

this.add(p11); this.add(p12); this.add(p13);

 p1.add(bStart);

 p1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bStart.addActionListener(this);

 p3.add(tx1);

 tx1.setEditable(false);

 p3.setLayout(new FlowLayout(FlowLayout.CENTER));

 p6.add(line);

 p6.setLayout(new FlowLayout(FlowLayout.CENTER));

 p4.add(appNum); p4.add(tx2);

 p4.setLayout(new FlowLayout(FlowLayout.LEFT));

 p5.add(bList);

 bList.addActionListener(this);

132

 p5.setLayout(new FlowLayout(FlowLayout.LEFT));

 p7.add(l3); p7.add(tx3);

 p7.setLayout(new FlowLayout(FlowLayout.LEFT));

 p8.add(l4); p8.add(tx4);

 p8.setLayout(new FlowLayout(FlowLayout.LEFT));

 p9.add(l5); p9.add(tx5);

 p9.setLayout(new FlowLayout(FlowLayout.LEFT));

 p10.add(l6); p10.add(tx6);

 p10.setLayout(new FlowLayout(FlowLayout.LEFT));

 p2.add(line1);

 p2.setLayout(new FlowLayout(FlowLayout.CENTER));

 p11.add(bTransaction);

 bTransaction.addActionListener(this);

 p11.setLayout(new FlowLayout(FlowLayout.CENTER));

 p12.add(tx7);

 tx7.setEditable(false);

 p12.setLayout(new FlowLayout(FlowLayout.CENTER));

 p13.add(text2);

 p13.setLayout(new FlowLayout(FlowLayout.CENTER));

 p14.add(text1);

 p14.setLayout(new FlowLayout(FlowLayout.CENTER));

 }

 public void actionPerformed(ActionEvent e)

 {

 try{

 // collect information and get ready for PIN

Verification

 if (e.getSource() == bStart)

 {

 capdu = new ApduCmd("00 A4 04 00

0E 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31");

 rapdu = se[0].execute(capdu);

 //System.out.println(rapdu); //

result of selecting 1PAY.SYS.DDF01

 if (rapdu.getStatusWord().isSuccess())

133

 tx1.setText("Payment

application found!");

 else

 {

 tx1.setText("Payment

application NOT found!");

 return;

 }

 capdu = new ApduCmd("00 B2 01 0C

00");

 rapdu = se[0].execute(capdu);

 // System.out.println(rapdu);

 String size =

NumUtil.hex2String(rapdu.getStatusWord().getSw2());

 //System.out.println(size);

 //

 // concat appropriate byte length

obtained above to get PSE data

 capdu = new ApduCmd("00B2010C" +

size);

 rapdu = se[0].execute(capdu);

 System.out.println(rapdu);

 // getAID(rapdu.toString());

 processApplication(rapdu.toString());

 //System.out.println("[Step 4] Now that

we know the AID, select the application");

 capdu = new ApduCmd("00 A4 04 00

07" + AID);

 rapdu = se[0].execute(capdu);

 capdu = new ApduCmd("80 A8 00 00

02 83 00");

 rapdu = se[0].execute(capdu);

 // check if transaction has been

initiated successfully

 if (rapdu.statusWord.isSuccess())

 transaction = true;

 else

 {

 transaction = false;

 return;

 }

134

 CAM_CVM_check(rapdu.toString().substring(10, 12)); // extract 2

byte AIP to check CAM & CVM

 //System.out.println(rapdu);

 // get & process AFL

 getAFL(rapdu.toString());

 tx2.setText("" +

numberOfApplications);

 }

 else

 if (e.getSource() == bList)

 {

 tx3.setText(applicationLabel);

 tx4.setText(applicationPriority);

 tx5.setText(applicationLanguage);

 tx6.setText(applicationName);

 }

 else

 if (e.getSource() == bTransaction)

 {

 if (transaction == true)

 tx7.setText("EMV transaction

has been successfully initialised");

 else

 tx7.setText("Cannot initiate EMV

transaction!");

 }

 } catch (CardException e1)

 {

 System.out.println("Error when accessing

PSE!");

 }

 }

 }

 // this function lists all existed application in ICC

 public void processApplication(String st)

 {

 int index, length;

 st = sanitise(st);

 // only takes the part from 4F to end

 st = st.substring(st.indexOf("4F"));

135

 // scan all payment applications

 while (true)

 {

 // get AID value (in hexa), tag 4F

 index = st.indexOf("4F");

 if (index != -1)

 {

 length = hexToDec(st.substring(index + 2, index + 4

));

 // multiple 2 since it is 2 bytes per hexa

 AID = st.substring(index + 4, index + 4 + length *

2);

 // remove the AID from st

 st = st.substring(index + 4 + length * 2);

 }

 // since we know that there is no more application left

 else break;

 // get application label (in ASCII), tag 50

 index = st.indexOf("50");

 if (index != -1)

 {

 length = hexToDec(st.substring(index + 2, index + 4

));

 // multiple 2 since it is 2 bytes per hexa

 applicationLabel = st.substring(index + 4, index + 4

+ length * 2);

 // convert this hexa string to ASCII will give a

meaningful name

 applicationLabel = hexToASCII(applicationLabel);

 // remove the label from st

 st = st.substring(index + 4 + length * 2);

 }

 // get application priority, tag 87

 index = st.indexOf("87");

 if (index != -1)

 {

 length = hexToDec(st.substring(index + 2, index + 4

));

 // multiple 2 since it is 2 bytes per hexa

 applicationPriority = st.substring(index + 4, index + 4

+ length * 2);

136

 // remove the label from st

 st = st.substring(index + 4 + length * 2);

 }

 // get application language preference, tag 5F 2D

 index = st.indexOf("5F2D");

 if (index != -1)

 {

length = hexToDec(st.substring(index + 4, index + 6

));

 // multiple 2 since it is 2 bytes per hexa

applicationLanguage = st.substring(index + 6, index

+ 6 + length * 2);

// convert this hexa string to ASCII will give a

meaningful name

applicationLanguage =

hexToASCII(applicationLanguage);

 // remove the label from st

 st = st.substring(index + 6 + length * 2);

 }

 // get application preferred name, tag 9F 12

 index = st.indexOf("9F12");

 if (index != -1)

 {

length = hexToDec(st.substring(index + 4, index + 6

));

 // multiple 2 since it is 2 bytes per hexa

applicationName = st.substring(index + 6, index + 6

+ length * 2);

 // convert this hexa string to ASCII will give a

meaningful name

 applicationName = hexToASCII(applicationName);

 // remove the label from st

 st = st.substring(index + 6 + length * 2);

 }

 numberOfApplications++;

 }

 }

 public void getAFL(String st)

 {

 st = sanitise(st);

137

 st = st.substring(3, st.length() - 9);

 // get whole length string AFLs, signals by tag 80

//int length = hexToDec(st.substring(st.indexOf("80") + 2,

st.indexOf("80") + 4));

 // ignore the next 2 byte of AIP

 // we only interest in SFI

 // first position of SFI appearance

 int index = st.indexOf("80") + 8;

 int interval = -8;

 while (true)

 {

 interval += 8;

 // no more AFL to read

 if (index + interval + 2 >= st.length()) break;

String SFI = st.substring(index + interval, index +

interval + 2);

 SFI = hexToBin(SFI);

 // replace 100 at tail

 SFI = SFI.substring(0, SFI.length() - 3) + "100";

 // convert SFI to decimal

 int dec = Integer.valueOf(SFI, 2);

 // convert SFI to hexa from

 SFI = Integer.toHexString(dec);

 // restore zero if needed

 if (SFI.length() == 1) SFI = "0" + SFI;

 // apply SFI to read record

 processAFL(SFI);

 }

 }

 public void processAFL(String st)

 {

 try {

 capdu = new ApduCmd("00B201" + st + "00");

 rapdu = se[0].execute(capdu);

 //System.out.println(rapdu);

138

String size =

NumUtil.hex2String(rapdu.getStatusWord().getSw2())

;

 capdu = new ApduCmd("00B201" + st + size);

 rapdu = se[0].execute(capdu);

 //System.out.println(rapdu);

 String SFI = sanitise(rapdu.toString());

 // append all results of READ RECORD into a big AFL

 AFL += SFI.substring(3, SFI.length() - 9);

 //System.out.println("This is AFL " + AFL);

 } catch (CardException e)

 {

System.out.println("Error when accessing READ

RECORD!");

 }

 }

 /*

 * Provide input form, reset ATR, prepare card

 */

 class InputForm extends JPanel implements ActionListener

 {

 JPanel p1 = new JPanel();

 JPanel p2 = new JPanel();

 JPanel p3 = new JPanel();

 JPanel p4 = new JPanel();

 JButton bInit = new JButton("Insert Card");

 JLabel l1 = new JLabel("ATR ");

 JLabel l2 = new JLabel("SmartCard ");

 JLabel l3 = new JLabel("Status ");

 JTextField tx1 = new JTextField(15); // for init

 JTextField tx2 = new JTextField(25); // for ATR

 JTextField tx3 = new JTextField(25); // for Status

 JTextArea atrText = new JTextArea(2, 25);

 public InputForm()

 {

 //this.setLayout(new FlowLayout(FlowLayout.LEFT));

 this.setLayout(new GridLayout(4, 2));

139

this.add(p1); this.add(p2); this.add(p3);

this.add(p4);

 p1.add(bInit); p1.add(tx1);

 tx1.setText("Waiting for card ...");

 tx1.setEditable(false);

 p1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bInit.addActionListener(this);

 p2.add(l1); p2.add(tx2);

 tx2.setEditable(false);

 p2.setLayout(new FlowLayout(FlowLayout.LEFT));

 p3.add(l2); p3.add(atrText);

 atrText.setBorder(new LineBorder(Color.BLACK, 1));

 atrText.setEditable(false);

 p3.setLayout(new FlowLayout(FlowLayout.LEFT));

 p4.add(l3); p4.add(tx3);

 tx3.setEditable(false);

 p4.setLayout(new FlowLayout(FlowLayout.LEFT));

 }

 public void actionPerformed(ActionEvent e)

 {

// collect information and get ready for PIN

Verification

 if (e.getSource() == bInit)

 {

 tx1.setText("Card inserted!");

 tx3.setText("Card is ready for access");

 EMVStart(); // reset EMV & acquire ATR

 tx2.setText(atrValue.substring(6));

 if (!cardManufacturer.isEmpty())

 atrText.setText(cardManufacturer);

 else

 atrText.setText("Cannot identify

smartcard manufacturer!");

 }

 }

 }

 public void EMVStart()

 {

 try{

 f = SessionFactory.getInstance();

140

 se = f.createSessions();

 for(int i = 0; i < se.length; i++)

 {

 Atr atr = se[i].open(); // open new session with

EMV card

 atrValue = atr.toString();

 System.out.println(atr);

 // get card Manufacturer

 cardBrand(atr.toString());

 }

 } catch (CardException e)

 {

 System.out.println("Error when process ATR!");

 }

 }

 // feed 2 byte AIP hexa into this function to check SDA, DDA, CDA &

CVM support

 public void CAM_CVM_check(String st)

 {

 int decimal = hexToDec(st); // convert hex to Dec

 st = Integer.toBinaryString(decimal); // convert Dec to

Binary

 // append 0 at the beginning to restore 8 bit as

toBinaryString cut all zero at front

 while (st.length() < 8)

 st = "0" + st;

 if (st.charAt(1) == '1') SDA = true;

 if (st.charAt(2) == '1') DDA = true;

 if (st.charAt(3) == '1') CVM = true;

 if (st.charAt(6) == '1') cDDA = true;

 }

 public void cardBrand(String atrCard)

 {

 // cut [ATR] part at the beginning of string

 atrCard = atrCard.substring(6, atrCard.length()-2);

 // check NatWest, HSBC, ...

 if (atrCard.equals("3B 6E 00 00 00 31 C0 71 C6 65 01 B0 01

03 37 83 90 00"))

 {

141

 cardManufacturer = " NatWest United Kingdom";

 return;

 }

 try {

 FileReader dataIn = new

FileReader("C://Data//smartcard_list.txt");

 BufferedReader f = new BufferedReader(dataIn);

 String line;

 while (true)

 {

 while (true)

 {

 line = f.readLine();

 if (!line.isEmpty() && line.charAt(0) >=

'0' && line.charAt(0) <= '9') break;

 if (line.equals("# do not delete"))

break;

 }

 if (line.equals("# do not delete")) break;

 if (atrCard.equals(line))

 while (true)

 {

 line = f.readLine();

 line = line.trim();

 if (line.isEmpty()) break;

 System.out.println(line);

 cardManufacturer += line +

"\n";

 }

 }

 } catch (IOException e)

 {

 System.out.println("IO Error with

smartcard_list.txt!");

 }

 }

 // retrieving personal information

 public void getPersonalInformation(String st)

 {

 int index;

 // effective date

142

 index = st.indexOf("5F25");

 if (index != -1)

 {

 beginYear = st.substring(index + 6, index + 8);

 beginMonth = st.substring(index + 8, index + 10);

 beginDate = st.substring(index + 10, index + 12);

 }

 // expire date

 index = st.indexOf("5F24");

 if (index != -1)

 {

 expireYear = st.substring(index + 6, index + 8);

 expireMonth = st.substring(index + 8, index + 10);

 expireDate = st.substring(index + 10, index + 12);

 }

 // 16 digits

 index = st.indexOf("5A");

 if (index != -1)

 {

 sixteenDigit = st.substring(index + 4, index + 20);

 }

 // get Card Holder name, tag 5F 20

 if (st.indexOf("5F20") != -1)

 {

 int nameLength =

hexToDec(st.substring(st.indexOf("5F20") + 4, st.indexOf("5F20") + 6));

 nameOnCard = st.substring(st.indexOf("5F20") + 6,

st.indexOf("5F20") + 6 + nameLength * 2);

 // covert the hexa string nameOnCard will give a

meaningful ASCII name

 nameOnCard = hexToASCII(nameOnCard);

 }

 // get BIC, tag 5F 54

 if (st.indexOf("5F54") != -1)

 {

 int nameLength =

hexToDec(st.substring(st.indexOf("5F54") + 4, st.indexOf("5F54") + 6));

 BIC = st.substring(st.indexOf("5F54") + 6,

st.indexOf("5F54") + 6 + nameLength * 2);

 }

 // get IBAN, tag 5F 53

 if (st.indexOf("5F53") != -1)

143

 {

 int nameLength =

hexToDec(st.substring(st.indexOf("5F53") + 4, st.indexOf("5F53") + 6));

 IBAN = st.substring(st.indexOf("5F53") + 6,

st.indexOf("5F53") + 6 + nameLength * 2);

 }

 // analyse card type

 getCardType();

 getExpireMonth();

 getBeginMonth();

 }

 // conver expire month to letters

 public void getExpireMonth()

 {

 int eMonth = Integer.parseInt(expireMonth);

 switch (eMonth)

 {

 case 1: expireMonth = "January"; break;

 case 2: expireMonth = "February"; break;

 case 3: expireMonth = "March"; break;

 case 4: expireMonth = "April"; break;

 case 5: expireMonth = "May"; break;

 case 6: expireMonth = "June"; break;

 case 7: expireMonth = "July"; break;

 case 8: expireMonth = "August"; break;

 case 9: expireMonth = "September"; break;

 case 10: expireMonth = "October"; break;

 case 11: expireMonth = "November"; break;

 case 12: expireMonth = "December"; break;

 }

 expireYear = "20" + expireYear;

 }

 // conver effective month to letters

 public void getBeginMonth()

 {

 int eMonth = Integer.parseInt(beginMonth);

 switch (eMonth)

 {

 case 1: beginMonth = "January"; break;

 case 2: beginMonth = "February"; break;

 case 3: beginMonth = "March"; break;

 case 4: beginMonth = "April"; break;

 case 5: beginMonth = "May"; break;

 case 6: beginMonth = "June"; break;

144

 case 7: beginMonth = "July"; break;

 case 8: beginMonth = "August"; break;

 case 9: beginMonth = "September"; break;

 case 10: beginMonth = "October"; break;

 case 11: beginMonth = "November"; break;

 case 12: beginMonth = "December"; break;

 }

 beginYear = "20" + beginYear;

 }

 // analyse card type based on 16 digits

 public void getCardType()

 {

 if (sixteenDigit.substring(0, 6).equals("417500") ||

 sixteenDigit.substring(0, 4).equals("4917") ||

 sixteenDigit.substring(0, 4).equals("4913") ||

 sixteenDigit.substring(0, 4).equals("4508") ||

 sixteenDigit.substring(0, 4).equals("4844"))

 cardType = "VISA Electron";

 else

 if (sixteenDigit.substring(0, 1).equals("4"))

 cardType = "VISA";

 else

 if (sixteenDigit.substring(0, 2).equals("51") ||

 sixteenDigit.substring(0, 2).equals("52") ||

 sixteenDigit.substring(0, 2).equals("53") ||

 sixteenDigit.substring(0, 2).equals("54") ||

 sixteenDigit.substring(0, 2).equals("55"))

 cardType = "MasterCard";

 else

if (sixteenDigit.substring(0, 2).equals("34") ||

sixteenDigit.substring(0, 2).equals("37"))

 cardType = "American Express";

 else

 if (sixteenDigit.substring(0, 3).equals("300") ||

 sixteenDigit.substring(0, 3).equals("301") ||

 sixteenDigit.substring(0, 3).equals("302") ||

 sixteenDigit.substring(0, 3).equals("303") ||

 sixteenDigit.substring(0, 3).equals("304") ||

 sixteenDigit.substring(0, 3).equals("305"))

 cardType = "Diners Club Blanche";

 else

if (sixteenDigit.substring(0, 4).equals("2014") ||

sixteenDigit.substring(0, 4).equals("2149"))

 cardType = "Diners Club enRoute";

 else

 if (sixteenDigit.substring(0, 2).equals("36"))

145

 cardType = "Diners Club International";

 else

if (sixteenDigit.substring(0, 2).equals("54") ||

sixteenDigit.substring(0, 2).equals("55"))

 cardType = "Diners Club US & Canada";

 else

 if (sixteenDigit.substring(0, 4).equals("6011") ||

 sixteenDigit.substring(0, 3).equals("622") ||

 sixteenDigit.substring(0, 2).equals("64") ||

 sixteenDigit.substring(0, 2).equals("65"))

 cardType = "Discover Card";

 else

 if (sixteenDigit.substring(0, 4).equals("3528") ||

 sixteenDigit.substring(0, 4).equals("3589"))

 cardType = "JCB";

 else

 if (sixteenDigit.substring(0, 4).equals("6304") ||

 sixteenDigit.substring(0, 4).equals("6706") ||

 sixteenDigit.substring(0, 4).equals("6771") ||

 sixteenDigit.substring(0, 4).equals("6709"))

 cardType = "Laser Card";

 else

 if (sixteenDigit.substring(0, 4).equals("5018") ||

 sixteenDigit.substring(0, 4).equals("5020") ||

 sixteenDigit.substring(0, 4).equals("5038") ||

 sixteenDigit.substring(0, 4).equals("6304") ||

 sixteenDigit.substring(0, 4).equals("6759") ||

 sixteenDigit.substring(0, 4).equals("6761") ||

 sixteenDigit.substring(0, 4).equals("6763"))

 cardType = "Maestro";

 else

 if (sixteenDigit.substring(0, 4).equals("6334") ||

 sixteenDigit.substring(0, 4).equals("6767"))

 cardType = "SOLO";

 else

 if (sixteenDigit.substring(0, 4).equals("4903") ||

 sixteenDigit.substring(0, 4).equals("4905") ||

 sixteenDigit.substring(0, 4).equals("4911") ||

 sixteenDigit.substring(0, 4).equals("4936") ||

 sixteenDigit.substring(0, 4).equals("6333") ||

 sixteenDigit.substring(0, 4).equals("6759") ||

sixteenDigit.substring(0, 6).equals("564182")

||

 sixteenDigit.substring(0, 6).equals("633110"))

 cardType = "SWITCH";

 else

 if (sixteenDigit.substring(0, 6).equals("502293"))

146

 cardType = "One World Bancorp";

 else

 if (sixteenDigit.substring(0, 6).equals("606263"))

 cardType = "MONEYTECH";

 }

 public void generateReport()

 {

 try{

PrintWriter f = new

PrintWriter("C://Data//report.txt");

 f.println("*** EMV card survey report");

 f.println();

f.println("Card is reseted, the ATR value returned is "

+ atrValue);

 if (!cardManufacturer.isEmpty())

f.println("Card manufacturer is " +

cardManufacturer);

 else

f.println("Cannot trace back card

manufacturer");

 f.println();

 f.println();

 ///

 f.println("*

*");

 f.println("* Card payment applications survey

*");

 f.println("*

*");

 f.println();

 f.println("Payment application folder exists in this

card");

 if (numberOfApplications == 1)

 f.println("There is only one payment

application on this card");

 else

 f.println("There are " + numberOfApplications

+ " payment applications on this card");

 f.println();

 f.println("The list of all payment applications:");

147

 f.println();

 /// application

 f.println("- Application label is " + applicationLabel);

f.println("- Application priority is " +

applicationPriority);

 if (!applicationName.isEmpty())

f.println("- Application preferred name is " +

applicationName);

 if (!applicationLanguage.isEmpty())

f.println("- Application preferred language is "

+ applicationLanguage);

 f.println();

 f.println();

 //

f.println("*

*");

f.println("* Card authentication methods survey

*");

f.println("*

*");

 f.println();

 f.println("Card authentication methods checking: ");

 if (SDA)

f.println("- Static data authentication is

supported");

 else

f.println("- Static data authentication is NOT

supported");

 if (DDA)

f.println("- Dynamic data authentication is

supported");

 else

f.println("- Dynamic data authentication is NOT

supported");

 if (cDDA)

f.println("- Combined dynamic data

authentication and application cryptogram generation

is supported");

 else

f.println("- Combined dynamic data

authentication and application cryptogram generation

is NOT supported");

148

 f.println();

f.println("The data element for static data

authentication found on this card: ");

 if (!CertificationAuthorityPublicKeyIndex.isEmpty())

f.println("- Certification Authority Public Key

Index is " + CertificationAuthorityPublicKeyIndex);

 if (!IssuerPublicKeyCertificate.isEmpty())

f.println("- Issuer Public Key Certificate is " +

IssuerPublicKeyCertificate);

 if (!SignedStaticApplicationData.isEmpty())

f.println("- Signed Static Application Data is "

+ SignedStaticApplicationData);

 if (!IssuerPublicKeyRemainder.isEmpty())

f.println("- Issuer Public Key Remainder is " +

IssuerPublicKeyRemainder);

 if (!IssuerPublicKeyExponent.isEmpty())

f.println("- Issuer Public Key Exponent is " +

IssuerPublicKeyExponent);

 f.println();

 f.println();

 ///

f.println("*

*");

f.println("* Cardholder verification methods survey

*");

f.println("*

*");

 f.println();

 f.println("Verification methods checking: ");

 if (CVM)

 {

 f.println("- Plaintext offline verification

Plaintext is " + Plaintext_offline_PIN_verification + ". This method " +

cPlaintext_offline_PIN_verification);

 f.println("- Enciphered online PIN verification is

" + Enciphered_online_PIN_verification + ". This method " +

cEnciphered_online_PIN_verification);

 f.println("- Plaintext offline PIN and signature

is " + Plaintext_offline_PIN_and_signature + ". This method " +

cPlaintext_offline_PIN_and_signature);

 f.println("- Enciphered offline PIN verification is

" + Enciphered_offline_PIN_verification + ". This method " +

cEnciphered_offline_PIN_verification);

 f.println("- Enciphered offline PIN and

signature is " + Enciphered_offline_PIN_and_signature + ". This method "

+ cEnciphered_offline_PIN_and_signature);

149

 f.println("- Signature verification only is " +

Signature_verification_only + ". This method " +

cSignature_verification_only);

f.println("- No cardholder verification needed is

" + No_cardholder_verification_needed + ".

This method " +

cNo_cardholder_verification_needed);

 f.println();

f.println("The priority order of CVM in this card

is:");

 if (!first.isEmpty()) f.println("1. " + first);

if (!second.isEmpty()) f.println("2. " +

second);

 if (!third.isEmpty()) f.println("3. " + third);

 if (!fourth.isEmpty()) f.println("4. " + fourth);

 if (!fifth.isEmpty()) f.println("5. " + fifth);

 if (!sixth.isEmpty()) f.println("6. " + sixth);

if (!seventh.isEmpty()) f.println("7. " +

seventh);

 }

 else

f.println("This card does not support any

cardholder verification method");

 f.println();

 f.println();

 ///

f.println("*

*");

 f.println("* Personal information survey *");

f.println("*

*");

 f.println();

 f.println("Cardholder name is " + nameOnCard);

 f.println("Card type is " + cardType);

f.println("Card sixteen digits are " +

sixteenDigit.substring(0, 12) + "****");

f.println("This card is effective from " + beginDate + "

/ " + beginMonth + " / " + beginYear);

f.println("This card will expire on " + expireDate + " /

" + expireMonth + " / " + expireYear);

 if (!BIC.isEmpty())

 f.println("The bank\\'s BIC is " + BIC);

 if (!IBAN.isEmpty())

 f.println("The bank\\'s IBAN is " + IBAN);

150

 f.close();

 } catch (IOException e)

 {

 System.out.println("Error when generating report!");

 }

 }

 //

 // These are supported functions to process hexadecimal

 // convert Hex to ASCII

 public static String hexToASCII(String hexa)

 {

 int[] text = new int [hexa.length() / 2];

 int j = 0;

 String ascii = "";

 StringBuilder s = new StringBuilder(hexa);

 // remove all space within hexa String

 for (int i=0; i < s.length(); i++)

 if (s.charAt(i) == ' ')

 s.deleteCharAt(i);

 // assign new non-space string back to hexa

 hexa = s.toString();

 for (int i = 0; i < hexa.length(); i += 2)

text[j++] = Integer.parseInt(hexa.substring(i, i + 2),

16);

 for (int i=0; i<text.length; i++)

 {

 ascii += (char)text[i];

 // print ascii text to screen too!

 //System.out.print((char)text[i] + " ");

 }

 return ascii;

 }

 // convert Hex to Decimal (number)

 public int hexToDec(String hex)

 {

 return Integer.parseInt(hex, 16);

 }

151

 // convert Hex to Binary (number), restore zero at front too

 public String hexToBin(String hex)

 {

 String s = Integer.toBinaryString(hexToDec(hex));

 // restore zero

 while (s.length() < 8)

 s = "0" + s;

 return s;

 }

 public String sanitise(String st)

 {

 StringBuilder s = new StringBuilder(st);

 for (int i=0; i < s.length(); i++)

 if (s.charAt(i) == ' ')

 s.deleteCharAt(i);

 return s.toString();

 }

 // restore space for display purpose

 public String display(String st)

 {

 StringBuilder s = new StringBuilder(st);

 for (int i=s.length(); i >= 0 ; i--)

 if (i % 2 == 0)

 s.insert(i, " ");

 return s.toString();

 }

 public boolean checkPDOL(String st)

 {

 return (st.indexOf("9F 38") != -1);

 }

 public static void main(String[] args)

 {

 // GUI

 new EMVSoftwareReader();

 }

}

152

EMVPINVerification.java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.border.*;

import com.jaccal.Atr;

import com.jaccal.CardException;

import com.jaccal.CardResponse;

import com.jaccal.Session;

import com.jaccal.SessionFactory;

import com.jaccal.command.ApduCmd;

import com.jaccal.util.NumUtil;

public class EMVPINVerification extends JFrame

{

 static String AID = "";

 static SessionFactory f;

 static Session[] se;

 static ApduCmd capdu;

 static CardResponse rapdu;

 public EMVPINVerification()

 {

 JTabbedPane table = new JTabbedPane();

 table.addTab("PIN Verification", new PINForm());

 this.add(table);

 this.setTitle("Offline PIN verification");

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setSize(400, 650);

 this.setLocationRelativeTo(null);

 this.setVisible(true);

 }

 class PINForm extends JPanel implements ActionListener,

FocusListener, KeyListener

 {

 JPanel pa00 = new JPanel();

 JPanel pa0 = new JPanel();

 JPanel pa1 = new JPanel();

 JPanel pa2 = new JPanel();

 JPanel pa3 = new JPanel();

 JPanel pa4 = new JPanel();

 JPanel pa5 = new JPanel();

 JButton bInit = new JButton("Initialise");

153

 JButton b1 = new JButton(new

ImageIcon("C://Data//EMVImage//1.png"));

 JButton b2 = new JButton(new

ImageIcon("C://Data//EMVImage//2.png"));

 JButton b3 = new JButton(new

ImageIcon("C://Data//EMVImage//3.png"));

 JButton b4 = new JButton(new

ImageIcon("C://Data//EMVImage//4.png"));

 JButton b5 = new JButton(new

ImageIcon("C://Data//EMVImage//5.png"));

 JButton b6 = new JButton(new

ImageIcon("C://Data//EMVImage//6.png"));

 JButton b7 = new JButton(new

ImageIcon("C://Data//EMVImage//7.png"));

 JButton b8 = new JButton(new

ImageIcon("C://Data//EMVImage//8.png"));

 JButton b9 = new JButton(new

ImageIcon("C://Data//EMVImage//9.png"));

 JButton b0 = new JButton(new

ImageIcon("C://Data//EMVImage//0.png"));

 JButton bE1 = new JButton(new

ImageIcon("C://Data//EMVImage//empty.png"));

 JButton bE2 = new JButton(new

ImageIcon("C://Data//EMVImage//empty.png"));

 JButton bEnter = new JButton(new

ImageIcon("C://Data//EMVImage//enter.png"));

 JButton bClear = new JButton(new

ImageIcon("C://Data//EMVImage//clear.png"));

 JButton bCancel = new JButton(new

ImageIcon("C://Data//EMVImage//cancel.png"));

 JTextArea status = new JTextArea(1, 29);

 JTextArea screen = new JTextArea(2, 29);

 JLabel space1 = new JLabel(" ");

 JLabel space2 = new JLabel(" ");

 JLabel space3 = new JLabel(" ");

 JLabel space4 = new JLabel(" ");

 String star = ""; // anonymous * on screen

 String pin = ""; // plaintext PIN

 int pinTry = 0;

 boolean focus = false;

 public PINForm()

 {

154

b1.setBorder(null); b2.setBorder(null);

b3.setBorder(null);

b4.setBorder(null); b5.setBorder(null);

b6.setBorder(null);

b7.setBorder(null); b8.setBorder(null);

b9.setBorder(null);

b0.setBorder(null); bE1.setBorder(null);

bE2.setBorder(null);

 b0.addActionListener(this);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

b5.addActionListener(this);

b6.addActionListener(this);

b7.addActionListener(this);

b8.addActionListener(this);

b9.addActionListener(this);

bEnter.setBorder(null); bClear.setBorder(null);

bCancel.setBorder(null);

bEnter.addActionListener(this);

bClear.addActionListener(this);

bCancel.addActionListener(this);

 //this.setLayout(new FlowLayout(FlowLayout.LEFT));

 this.setLayout(new GridLayout(7, 1));

this.add(pa1); this.add(pa00); this.add(pa0);

this.add(pa2); this.add(pa3); this.add(pa4);

this.add(pa5);

 pa1.add(bInit);

 pa1.setLayout(new FlowLayout(FlowLayout.CENTER));

 bInit.addActionListener(this);

 pa00.add(status);

 status.setBorder(new LineBorder(Color.GRAY, 5));

status.setFont(new Font("monospaced", Font.BOLD,

20));

 status.setForeground(Color.BLUE);

 status.setEditable(false);

 pa00.setLayout(new FlowLayout(FlowLayout.LEFT));

 pa0.add(screen);

 screen.addFocusListener(this);

 screen.addKeyListener(this);

 screen.setBorder(new LineBorder(Color.RED, 5));

155

screen.setFont(new Font("monospaced", Font.BOLD,

20));

 screen.setForeground(Color.BLUE);

 screen.setEditable(false);

 pa0.setLayout(new FlowLayout(FlowLayout.LEFT));

pa2.add(b1); pa2.add(b2); pa2.add(b3);

pa2.add(space1); pa2.add(bEnter);

 pa2.setLayout(new FlowLayout(FlowLayout.LEFT));

pa3.add(b4); pa3.add(b5); pa3.add(b6);

pa3.add(space2); pa3.add(bClear);

 pa3.setLayout(new FlowLayout(FlowLayout.LEFT));

pa4.add(b7); pa4.add(b8); pa4.add(b9);

pa4.add(space3); pa4.add(bCancel);

 pa4.setLayout(new FlowLayout(FlowLayout.LEFT));

 pa5.add(bE1); pa5.add(b0); pa5.add(bE2);

 pa5.setLayout(new FlowLayout(FlowLayout.LEFT));

 }

 public void keyTyped(KeyEvent e)

 {

 char key = e.getKeyChar();

 if (key == '0')

 {

 star += " * ";

 screen.setText(star);

 pin += "0";

 screen.repaint();

 }

 else

 if (key == '1')

 {

 star += " * ";

 screen.setText(star);

 pin += "1";

 screen.repaint();

 }

 else

 if (key == '2')

 {

 star += " * ";

 screen.setText(star);

 pin += "2";

 screen.repaint();

 }

 else

156

 if (key == '3')

 {

 star += " * ";

 screen.setText(star);

 pin += "3";

 screen.repaint();

 }

 else

 if (key == '4')

 {

 star += " * ";

 screen.setText(star);

 pin += "4";

 screen.repaint();

 }

 else

 if (key == '5')

 {

 star += " * ";

 screen.setText(star);

 pin += "5";

 screen.repaint();

 }

 else

 if (key == '6')

 {

 star += " * ";

 screen.setText(star);

 pin += "6";

 screen.repaint();

 }

 else

 if (key == '7')

 {

 star += " * ";

 screen.setText(star);

 pin += "7";

 screen.repaint();

 }

 else

 if (key == '8')

 {

 star += " * ";

 screen.setText(star);

 pin += "8";

 screen.repaint();

 }

 else

157

 if (key == '9')

 {

 star += " * ";

 screen.setText(star);

 pin += "9";

 screen.repaint();

 }

 }

 public void keyPressed(KeyEvent e)

 {

 }

 public void keyReleased(KeyEvent e)

 {

 }

 public void focusGained(FocusEvent e)

 {

 screen.repaint();

 //screen.revalidate();

 focus = true;

 screen.setBorder(new LineBorder(Color.RED, 5));

 }

 public void focusLost(FocusEvent e)

 {

 screen.repaint();

 //screen.revalidate();

 focus = false;

 screen.setBorder(new LineBorder(Color.GRAY, 5));

 }

 public void actionPerformed(ActionEvent e)

 {

// collect information and get ready for PIN

Verification

 if (e.getSource() == bInit)

 {

 PINProcess(); // initialise ICC

 pinTry = getPINTryCounter();

 if (pinTry == 1)

 {

 status.setForeground(Color.RED);

158

status.setText("Only ONE PIN try

left!");

 }

 else

 {

 status.setForeground(Color.BLUE);

status.setText("PIN tries remaining: " +

pinTry);

 }

 }

 else

 // PIN input

if (e.getSource() == b1 || e.getSource() == b2 ||

e.getSource() == b3 || e.getSource() == b4 ||

e.getSource() == b5 ||

e.getSource() == b6 || e.getSource() == b7 ||

e.getSource() == b8 || e.getSource() == b9 ||

e.getSource() == b0)

 {

 star += " * ";

 screen.setText(star);

 if (e.getSource() == b1) pin += "1"; else

 if (e.getSource() == b2) pin += "2"; else

 if (e.getSource() == b3) pin += "3"; else

 if (e.getSource() == b4) pin += "4"; else

 if (e.getSource() == b5) pin += "5"; else

 if (e.getSource() == b6) pin += "6"; else

 if (e.getSource() == b7) pin += "7"; else

 if (e.getSource() == b8) pin += "8"; else

 if (e.getSource() == b9) pin += "9"; else

 if (e.getSource() == b0) pin += "0";

 }

 else

if (e.getSource() == bEnter) // send entered PIN to

ICC

 {

if (pin.length() < 4 || pin.length() > 12) //

wrong PIN length, reset PIN too

 {

 status.setText("Invalid PIN length");

 screen.setText("");

 pin = "";

 star = "";

 }

 else // perform PIN verification

 {

 if (verifyPIN(pin))

159

screen.setText("PIN entered

Successful!");

 else

screen.setText("PIN does not

match!");

 pinTry = getPINTryCounter();

 if (pinTry == 1)

 {

 status.setForeground(Color.RED);

status.setText("Only ONE PIN try

left!");

 }

 else

 {

 status.setForeground(Color.BLUE);

status.setText("PIN tries remaining: " +

pinTry);

 }

 pin = "";

 star = "";

 }

 }

 else

 if (e.getSource() == bClear) // clear screen & data

 {

 screen.setText("");

 star = "";

 pin = "";

 }

 else

 if (e.getSource() == bCancel) // terminate process

 {

 status.setText("Card is ejected");

 screen.setText("");

 star = "";

 pin = "";

 try {

 se[0].close();

 f.resetSessionFactory();

 } catch (CardException e1) { }

 return;

 }

 }

 }

 public static int hexToDec(String hex)

 {

160

 return Integer.parseInt(hex, 16);

 }

 public static void getAID(String st)

 {

 StringBuilder s = new StringBuilder(st);

 for (int i=0; i < s.length(); i++)

 if (s.charAt(i) == ' ')

 s.deleteCharAt(i);

 st = s.toString();

int AIDLength = hexToDec(st.substring(st.indexOf("4F") + 2,

st.indexOf("4F") + 4));

AID = st.substring(st.indexOf("4F") + 4, st.indexOf("4F") +

4 + AIDLength * 2);

 }

 // extract the PIN Try Counter number

 public int getPINTryCounter()

 {

 StringBuilder s = new StringBuilder();

 try{

 System.out.println("GETTING PIN TRY COUNTER");

 capdu = new ApduCmd("80 CA 9F 17 00");

 rapdu = se[0].execute(capdu);

 System.out.println(rapdu);

 System.out.println("Try again with new length");

 capdu = new ApduCmd("80 CA 9F 17 04");

 rapdu = se[0].execute(capdu);

 System.out.println(rapdu);

 /////////////

 s = new StringBuilder(rapdu.toString());

 for (int i=0; i < s.length(); i++)

 if (s.charAt(i) == ' ')

 s.deleteCharAt(i);

 } catch (CardException e)

 {

System.out.println("Error when getting PIN try

counter!");

 }

 String st = s.toString();

161

return Integer.parseInt(st.substring(st.indexOf("9F17") + 6,

st.indexOf("9F17") + 8));

 }

 // send PIN to ICC

 public boolean verifyPIN(String pin)

 {

 try{

 System.out.println("APPLYING VERIFY COMMAND");

 //00 20 00 80 08

 String command = "00 20 00 80 08 24" + pin;

 while (command.length() < 26) //14 + 12 = 26

 command += "F";

 System.out.println(command);

 capdu = new ApduCmd(command);

 rapdu = se[0].execute(capdu);

 System.out.println(capdu);

 if (capdu.toString().substring(5, 10).equals("90 00"))

 return true;

 } catch (CardException e)

 {

 System.out.println("Error when sending PIN to ICC");

 }

 return false;

 }

 // prepare ICC for PIN verification

 public static void PINProcess()

 {

 try {

 f = SessionFactory.getInstance();

 se = f.createSessions();

 Atr atr = se[0].open();

capdu = new ApduCmd("00 A4 04 00 0E 31 50 41 59

2E 53 59 53 2E 44 44 46 30 31");

 rapdu = se[0].execute(capdu);

 capdu = new ApduCmd("00 B2 01 0C 00");

 rapdu = se[0].execute(capdu);

String size =

NumUtil.hex2String(rapdu.getStatusWord().getSw2())

;

 capdu = new ApduCmd("00 B2 01 0C" + size);

162

 rapdu = se[0].execute(capdu);

 getAID(rapdu.toString());

 capdu = new ApduCmd("00 A4 04 00 07" + AID);

 rapdu = se[0].execute(capdu);

 capdu = new ApduCmd("80 A8 00 00 02 83 00");

 rapdu = se[0].execute(capdu);

 } catch (CardException e)

 {

System.out.println("Error when preparing PIN

verification!");

 }

 }

 public static void main(String[] args)

 {

 new EMVPINVerification();

 }

}

163

Appendix C: CRC cards

164

165

References and Bibliography

[1] EMVCo, EMV 2008 Integrated Circuit Card Specifications for Payment

Systems, Book 1 – Application Independent ICC to Terminal Interface

Requirements, Version 4.2, June 2008,

http://www.emvco.com/specifications.aspx?id=155

[2] EMVCo, EMV 2008 Integrated Circuit Card Specifications for Payment

Systems, Book 2 – Security and Key Management, Version 4.2, June 2008,

http://www.emvco.com/specifications.aspx?id=155

[3] EMVCo, EMV 2008 Integrated Circuit Card Specifications for Payment

Systems, Book 3 – Application Specification, Version 4.2, June 2008,

http://www.emvco.com/specifications.aspx?id=155

[4] EMVCo, EMV 2008 Integrated Circuit Card Specifications for Payment

Systems, Book 4 – Cardholder, Attendant, and Acquirer Interface

Requirements, Version 4.2, June 2008,

http://www.emvco.com/specifications.aspx?id=155

[5] Mitchell, C., IY2760/CS3760 Case Study 1: EMV, Version 1, ISG Group, Royal

Holloway,

http://www.isg.rhul.ac.uk/~cjm/IY2760/Case_study_1_EMV_0910_v1.pdf

[6] Radu, C., Implementing Electronic Card Payment Systems, Artech House, 2002

[7] Chen, Z., A Programmer’s Guide to Java Smart Cards (Java Series), Prentice

Hall, 2000

[8] Buetler, I., Smart Card APDU Analysis, viewed 25-November-2009,

https://www.blackhat.com/presentations/bh-usa-

08/Buetler/BH_US_08_Buetler_SmartCard_APDU_Analysis_V1_0_2.pdf

[9] Rousseau, L., smartcard_list.txt, viewed 10-September-2009,

http://ludovic.rousseau.free.fr/softwares/pcsc-tools/smartcard_list.txt

[10] Sheong, S., Getting information from an EMV Chip card with Java, viewed

01-October-2009,

http://blog.saush.com/2006/09/08/getting-information-from-an-emv-chip-

card/

[11] Microsoft, Smartcard Resource Manager, http://msdn.microsoft.com/en-

us/library/aa380148(VS.85).aspx

[12] Mayes, K., Smart Cards and RFIDs in the Modern World, ISG Group, Royal

Holloway,

http://www.isg.rhul.ac.uk/~cjm/IY2760/Smart%20card%20intro%20051109%

20handouts.pdf

166

[13] EMVCo, EMV Card Personalization Specification, Version 1.1, July 2007,

http://www.emvco.com/specifications.aspx?id=20

[14] MasterCard Worldwide, Card Personalization Validation Guide, January 2009,

http://www.paypass.com/pdf/public_documents/CPV_Manual_Jan_2009.pdf

[15] Logic group, Introduction to EMV Chip & PIN, http://www.the-logic-

group.com/Downloads/Intro-to-EMV.pdf

[16] Photolia, ATM Keypad picture, viewed 14-January-2010, http://static-

p3.fotolia.com/jpg/00/00/04/50/400_F_45001_9lewF3qI6OLmDoylvj1TQrA6l

ZVSOq.jpg

[17] Wikipedia, Bank card number, viewed 21-January-2010,

http://en.wikipedia.org/wiki/Credit_card_numbers

