

Confident COVID-19 cough prediction on imbalanced data

Julia A. Meister*¹, Khuong An Nguyen¹, Zhiyuan Luo²

¹University of Brighton, ²Royal Holloway, University of London

*J.Meister@brighton.ac.uk

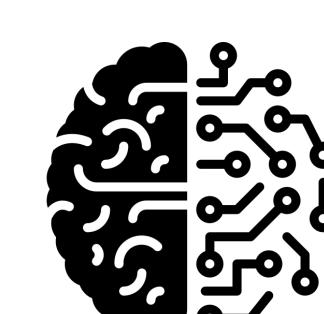
Motivation

- COVID cough data is *heavily imbalanced*, and it is challenging to collect more samples.
- Therefore, *models are biased* and their *predictions cannot be trusted*.

→ We propose a confidence measure for COVID-19 cough classification.

Challenges

Imbalanced data



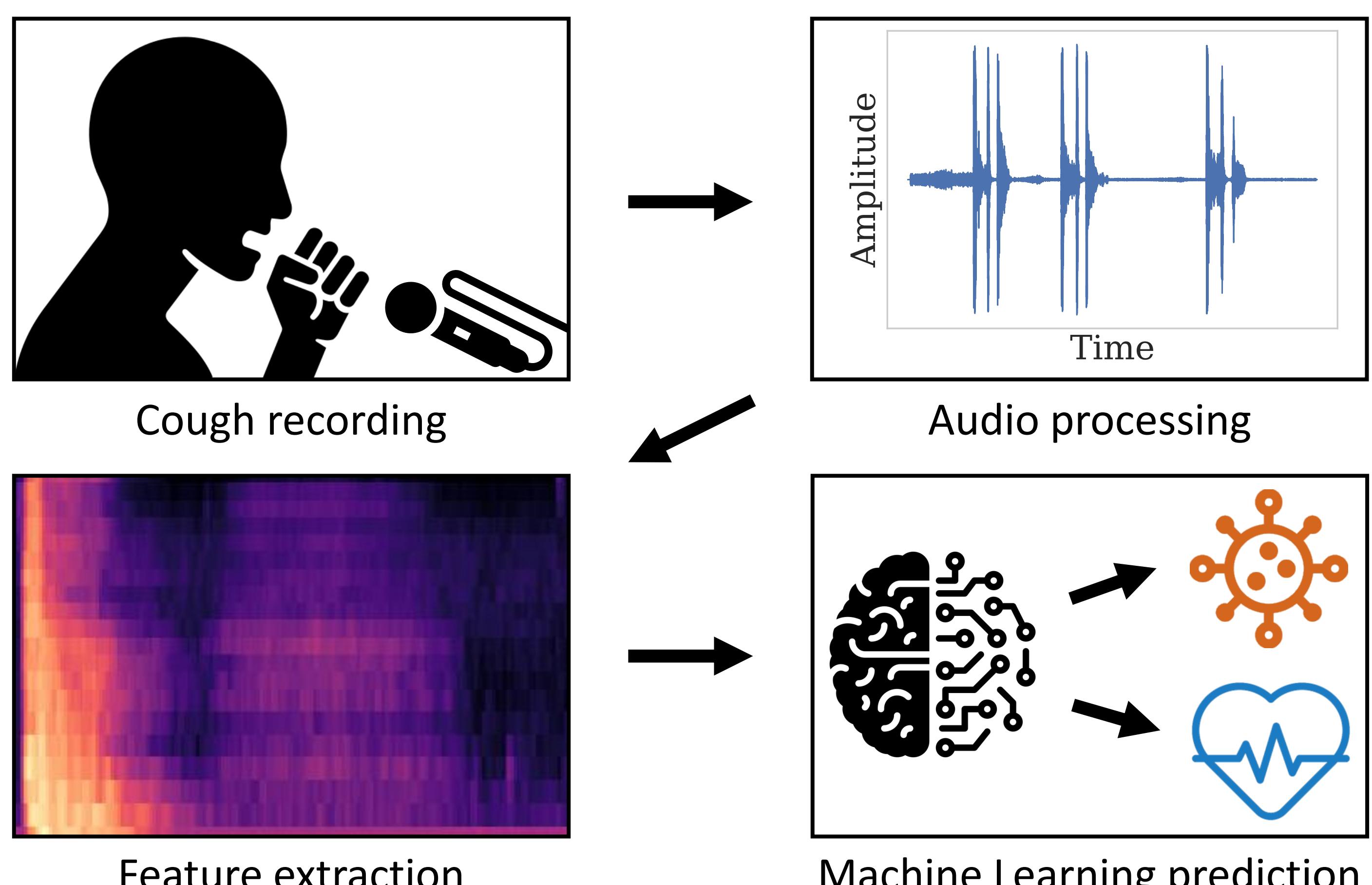
Biased models

Prediction confidence

1. COVID-19 cough classification

- Cough classification* is an accessible, low-cost, and environmentally friendly COVID-19 screening alternative.
- Machine Learning models can *successfully identify COVID-19 and healthy coughs* from Mel frequency cepstral audio features [1].
- But we have to make the *risky assumption* that the models will on average perform as well on unseen data as on the training set.

→ How trustworthy are our COVID-19 predictions?



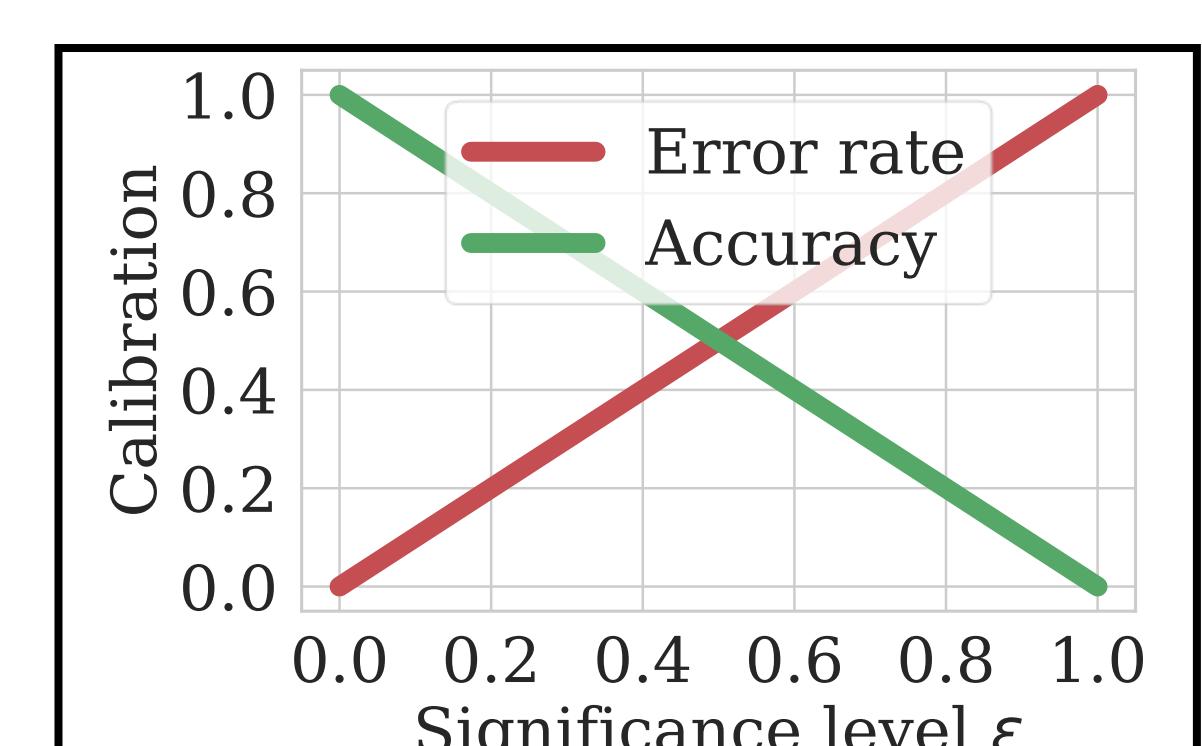
2. Confident classification with Conformal Prediction (CP)

- CP acts as a wrapper for any Machine Learning model, transforming point predictions $y_j \in Y$ into *prediction sets* $\Gamma_i^{1-\epsilon}$ [2].
 - (i) $\Gamma_i^{1-\epsilon} = \{y_j \in Y \mid p_i(y_j) > \epsilon\}$
- CP *statistically guarantees total error rates* (i.e. the true label y_i^* is not included) up to a maximum, user-selected *significance level ϵ* .
 - (ii) $\mathbb{P}(y_i^* \notin \Gamma_i^{1-\epsilon}) \leq \epsilon$
- P-values $p_{n+1}(y_j)$ are derived from the sample $n+1$'s strangeness $\alpha_{n+1}^{y_j}$ compared to n training samples for all possible labels $y_j \in Y$.
 - (iii) $p_{n+1}(y_j) = \frac{|\{i = 1, \dots, n : \alpha_i^{y_j} \leq \alpha_{n+1}^{y_j}\}|}{n+1}$

→ CP statistically measures the likelihood of a sample and its postulated label given the training data with guaranteed validity.

Sample	Prediction	Confidence
#1	{COVID}	Certain
#2	{COVID, Healthy}	Uncertain
#3	{}	Outlier
#4	{Healthy}	Certain

CP prediction sets $\Gamma_i^{1-\epsilon}$



Guaranteed validity

3. Adjusting for imbalanced data

- Mondrian CP extends guarantees to *class-conditional validity*.
- Mondrian CP assesses a sample $n+1$'s strangeness $\alpha_{n+1}^{y_j}$ compared to a *class-conditioned training subset* for each possible label $y_j \in Y$.
- Adjusted Equations (ii) and (iii):

$$(ii^*) \quad \mathbb{P}(y_i^* \notin \Gamma_i^{1-\epsilon}) \leq \epsilon : y_i^* = y_j, y_j \in Y$$

$$(iii^*) \quad p_{n+1}(y_j) = \frac{|\{i = 1, \dots, n : y_i^* = y_j, \alpha_i^{y_j} \leq \alpha_{n+1}^{y_j}\}|}{|\{i = 1, \dots, n : y_i^* = y_j\}| + 1}$$

→ Mondrian CP guarantees that all class error rates are capped at ϵ regardless of imbalances, e.g. as in the selected two datasets.

- COVID-19 cough datasets: Cambridge [3] and Coswara [4]

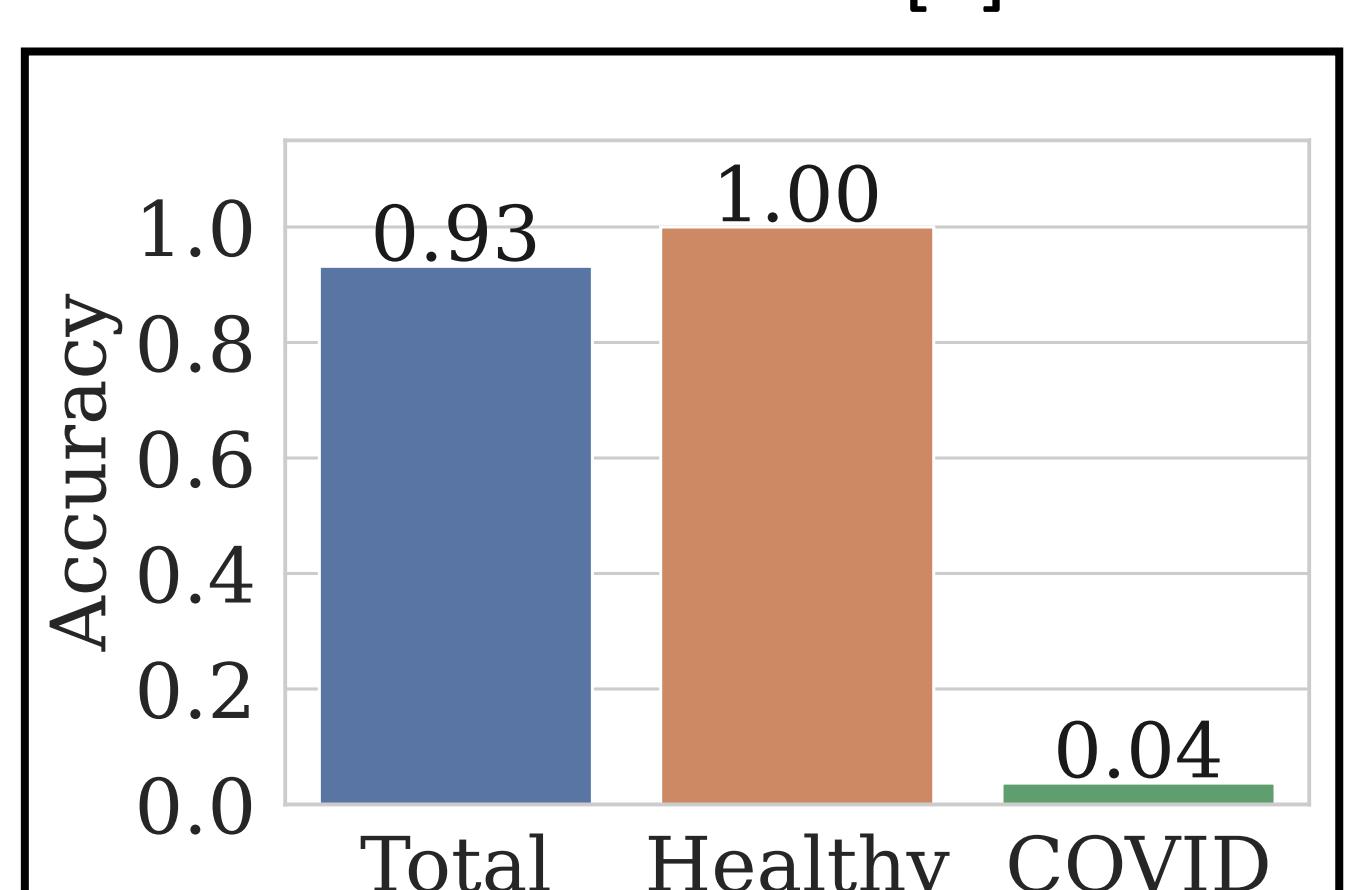
Samples	COVID	Healthy	Ratio	Σ
Cambridge	141 (29%)	346 (71%)	1:2.5	487 (100%)
Coswara	81 (7%)	1074 (93%)	1:13	1155 (100%)

4. Empirical results

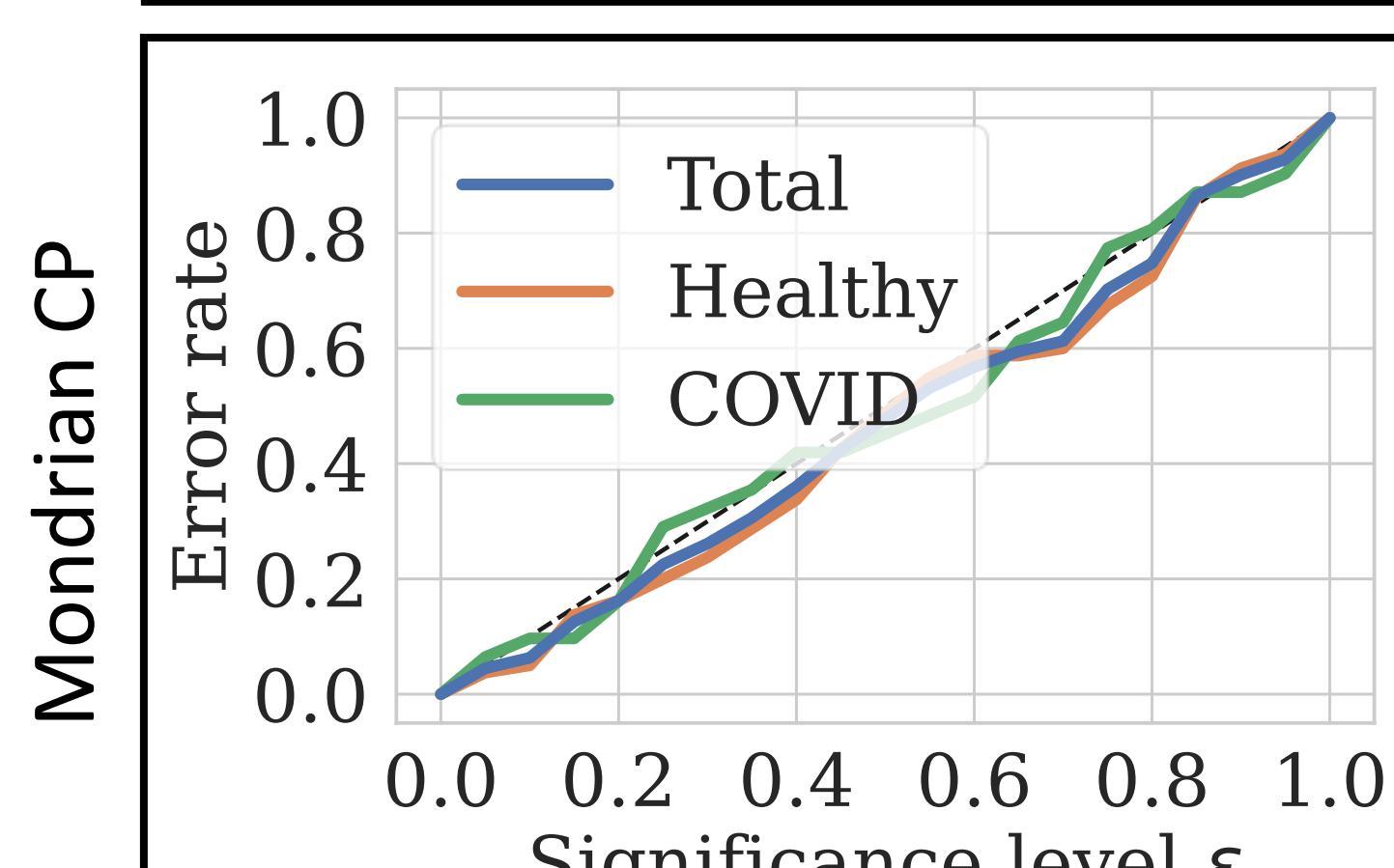
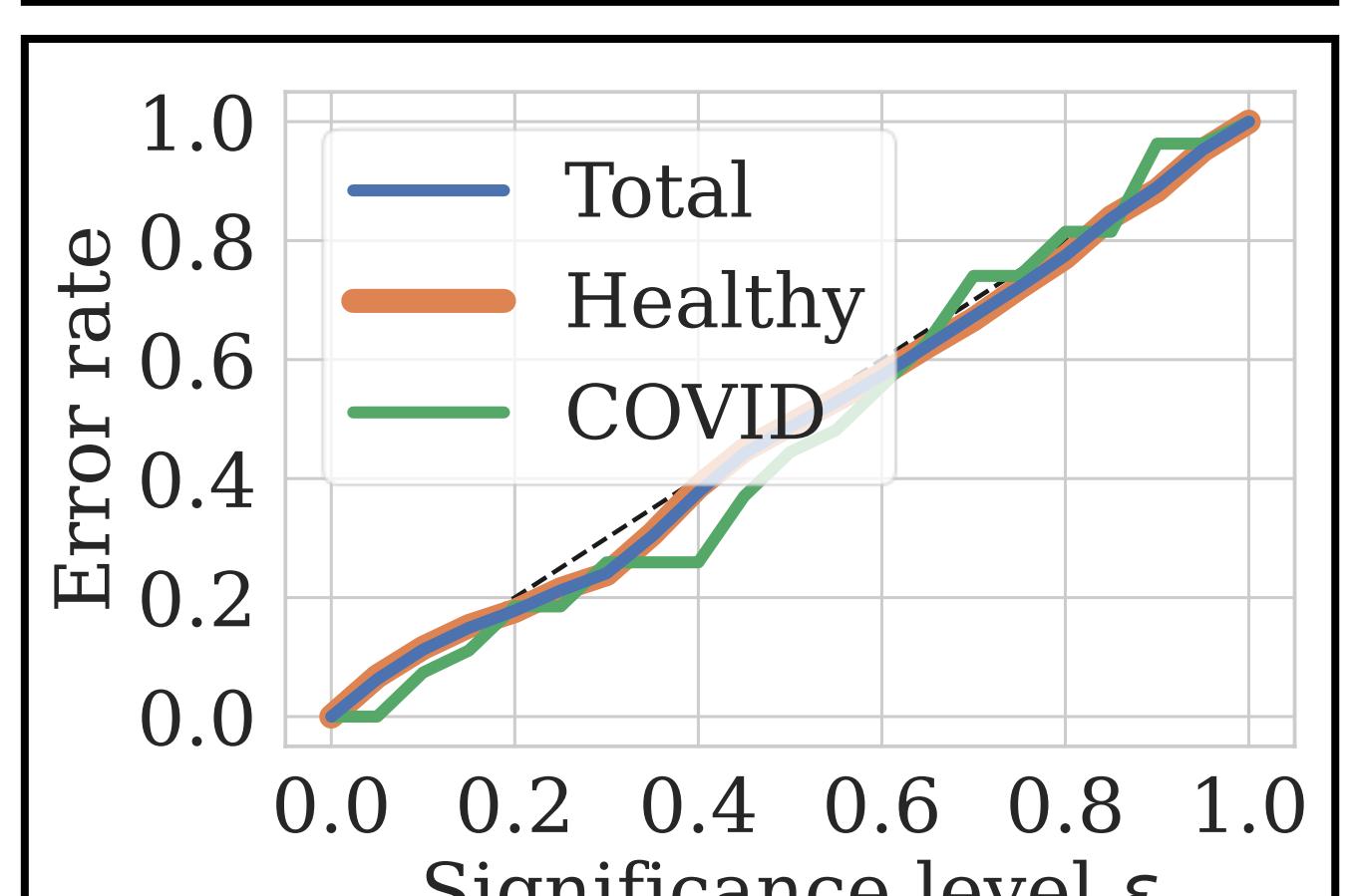
Cambridge data [3]



Coswara data [4]



Mondrian CP



→ CP guarantees a maximum error rate for each cough prediction.
 → Mondrian CP has class-conditional validity and removes bias against the minority class, making each prediction trustworthy.
 → Our proposed method is successful for COVID-19 cough classification, and may be transferred to other problems.

References

- [1] JA. Meister, et al. "Audio feature ranking for sound-based COVID-19 patient detection." EPIA Conference. 2022.
- [2] AE. Ashby, et al. "Cough-based COVID-19 detection with audio quality clustering and confidence measure based learning." COPA conference. 2022.
- [3] C. Brown, et al. "Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data." SIGKDD. 2020.
- [4] N. Sharma, et al. "Coswara - A database of breathing, cough, and voice sounds for COVID-19 diagnosis." 2020.

Acknowledgements

This work is funded by Santander UK's Global Challenges Research grant.